Suppr超能文献

基于机器学习的移动物联网入侵检测系统。

A Machine Learning Based Intrusion Detection System for Mobile Internet of Things.

机构信息

Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA.

Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA.

出版信息

Sensors (Basel). 2020 Jan 14;20(2):461. doi: 10.3390/s20020461.

Abstract

Intrusion detection systems plays a pivotal role in detecting malicious activities that denigrate the performance of the network. Mobile adhoc networks (MANETs) and wireless sensor networks (WSNs) are a form of wireless network that can transfer data without any need of infrastructure for their operation. A more novel paradigm of networking, namely Internet of Things (IoT) has emerged recently which can be considered as a superset to the afore mentioned paradigms. Their distributed nature and the limited resources available, present a considerable challenge for providing security to these networks. The need for an intrusion detection system (IDS) that can acclimate with such challenges is of extreme significance. Previously, we proposed a cross layer-based IDS with two layers of detection. It uses a heuristic approach which is based on the variability of the correctly classified instances (CCIs), which we refer to as the accumulated measure of fluctuation (AMoF). The current, proposed IDS is composed of two stages; stage one collects data through dedicated sniffers (DSs) and generates the CCI which is sent in a periodic fashion to the super node (SN), and in stage two the SN performs the linear regression process for the collected CCIs from different DSs in order to differentiate the benign from the malicious nodes. In this work, the detection characterization is presented for different extreme scenarios in the network, pertaining to the power level and node velocity for two different mobility models: Random way point (RWP), and Gauss Markov (GM). Malicious activity used in the work are the blackhole and the distributed denial of service (DDoS) attacks. Detection rates are in excess of 98% for high power/node velocity scenarios while they drop to around 90% for low power/node velocity scenarios.

摘要

入侵检测系统在检测恶意活动方面起着至关重要的作用,这些恶意活动会降低网络的性能。移动自组网 (MANETs) 和无线传感器网络 (WSNs) 是一种无线网络形式,它可以在不需要任何基础设施的情况下传输数据。最近出现了一种更新型的网络模式,即物联网 (IoT),它可以被认为是上述模式的超集。它们的分布式特性和有限的可用资源,给这些网络提供安全保障带来了相当大的挑战。因此,需要有一种能够适应这些挑战的入侵检测系统 (IDS)。此前,我们提出了一种具有两层检测的基于跨层的 IDS。它使用了一种基于正确分类实例 (CCI) 的可变性的启发式方法,我们称之为波动的累积度量 (AMoF)。当前提出的 IDS 由两个阶段组成;第一阶段通过专用嗅探器 (DS) 收集数据,并生成 CCI,定期发送到超级节点 (SN);第二阶段,SN 对来自不同 DS 的收集到的 CCI 执行线性回归过程,以便区分良性和恶意节点。在这项工作中,针对两种不同的移动模型:随机方向点 (RWP) 和高斯马尔可夫 (GM),对网络中不同的极端场景进行了检测特征描述。所使用的恶意活动是黑洞和分布式拒绝服务 (DDoS) 攻击。在高功率/节点速度场景下,检测率超过 98%,而在低功率/节点速度场景下,检测率下降到约 90%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9496/7013568/01b375a224d6/sensors-20-00461-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验