Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, P. R. China.
J Mater Chem B. 2020 Feb 14;8(6):1157-1170. doi: 10.1039/c9tb02130b. Epub 2020 Jan 17.
Multidrug resistance (MDR) is a common phenomenon in clinical oncology and is a major obstacle to cancer chemotherapy. Many nanoparticle (NP)-based drug delivery systems have been developed to overcome MDR depending on increasing intracellular drug concentrations via increased cellular uptake and rapid drug release. The objective of this work was to investigate the performance and possible mechanisms of enzyme-sensitive mPEGylated dendron-GFLG-DOX conjugate based nanoparticles for blockading the MDR phenotype of MCF-7/ADR. In vitro, mPEGylated dendron-GFLG-DOX conjugate based nanoparticles could significantly promote cellular uptake and accumulation, potent cytotoxicity and apoptosis compared to free DOX in resistant cells. mPEGylated dendron-GFLG-DOX conjugate based nanoparticles were found to translocate across the membranes of resistant cells via active endocytic pathways leading to more DOX accumulating in the nuclei of MCF-7/ADR cells. Importantly, we found that mPEGylated dendron-GFLG-DOX conjugate based nanoparticles could induce cathepsin B in the cytoplasm and enhance lysosomal-mediated cell death compared to free DOX. Furthermore, mPEGylated dendron-GFLG-DOX conjugate based nanoparticles enhanced the drug's penetration, toxicity, and growth inhibition compared to free DOX in the three-dimensional multicellular tumor spheroid model. In vivo, mPEGylated dendron-GFLG-DOX conjugate based nanoparticles significantly improved the therapeutic efficacy against MDR xenograft tumors, and showed better biocompatibility than free DOX. These results indicated that mPEGylated dendron-GFLG-DOX conjugate based nanoparticles could be used as an alternative drug delivery system for MDR tumor treatment through initiating the lysosomal apoptosis pathway.
多药耐药(MDR)是临床肿瘤学中的常见现象,是癌症化疗的主要障碍。许多基于纳米粒子(NP)的药物传递系统已被开发出来,以通过增加细胞摄取和快速药物释放来克服 MDR,从而提高细胞内药物浓度。本工作的目的是研究基于酶敏感的 mPEG 化树状大分子-GFLG-DOX 缀合物的纳米粒子克服 MCF-7/ADR 多药耐药表型的性能和可能的机制。在体外,与游离 DOX 相比,基于 mPEG 化树状大分子-GFLG-DOX 缀合物的纳米粒子能够显著促进耐药细胞的细胞摄取和积累、有效细胞毒性和细胞凋亡。研究发现,基于 mPEG 化树状大分子-GFLG-DOX 缀合物的纳米粒子通过主动内吞途径穿过耐药细胞的膜,导致更多的 DOX 积聚在 MCF-7/ADR 细胞的核内。重要的是,与游离 DOX 相比,我们发现基于 mPEG 化树状大分子-GFLG-DOX 缀合物的纳米粒子可以在细胞质中诱导组织蛋白酶 B,并增强溶酶体介导的细胞死亡。此外,与游离 DOX 相比,基于 mPEG 化树状大分子-GFLG-DOX 缀合物的纳米粒子在三维多细胞肿瘤球体模型中增强了药物的渗透、毒性和生长抑制作用。在体内,基于 mPEG 化树状大分子-GFLG-DOX 缀合物的纳米粒子显著提高了对多药耐药异种移植肿瘤的治疗效果,并且比游离 DOX 显示出更好的生物相容性。这些结果表明,基于 mPEG 化树状大分子-GFLG-DOX 缀合物的纳米粒子可以通过引发溶酶体凋亡途径,用作治疗多药耐药肿瘤的替代药物传递系统。
Colloids Surf B Biointerfaces. 2019-5-20
Colloids Surf B Biointerfaces. 2019-2-5
Int J Nanomedicine. 2018-3-21
Front Pharmacol. 2023-1-30
Front Pharmacol. 2022-2-14
Medicina (Kaunas). 2021-11-5
Int J Mol Sci. 2021-8-24