Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
Disaster Reduction & Environmental Engineering Department, Kozo Keikaku Engineering Inc., 4-5-3 Chuo, Nakanoku, Tokyo, 164-0011, Japan.
Sci Rep. 2020 Jan 20;10(1):664. doi: 10.1038/s41598-019-57255-4.
Delay embedding-a method for reconstructing dynamical systems by delay coordinates-is widely used to forecast nonlinear time series as a model-free approach. When multivariate time series are observed, several existing frameworks can be applied to yield a single forecast combining multiple forecasts derived from various embeddings. However, the performance of these frameworks is not always satisfactory because they randomly select embeddings or use brute force and do not consider the diversity of the embeddings to combine. Herein, we develop a forecasting framework that overcomes these existing problems. The framework exploits various "suboptimal embeddings" obtained by minimizing the in-sample error via combinatorial optimization. The framework achieves the best results among existing frameworks for sample toy datasets and a real-world flood dataset. We show that the framework is applicable to a wide range of data lengths and dimensions. Therefore, the framework can be applied to various fields such as neuroscience, ecology, finance, fluid dynamics, weather, and disaster prevention.
延迟嵌入-一种通过延迟坐标重建动力系统的方法-被广泛用于作为无模型方法来预测非线性时间序列。当观察到多变量时间序列时,可以应用几种现有框架来生成单个预测,该预测结合了从各种嵌入中得出的多个预测。然而,这些框架的性能并不总是令人满意,因为它们随机选择嵌入或者使用蛮力,并且不考虑组合的嵌入的多样性。在此,我们开发了一种克服这些现有问题的预测框架。该框架通过组合优化来最小化样本内误差来利用各种“次优嵌入”。该框架在样本玩具数据集和真实洪水数据集上实现了现有框架中的最佳结果。我们表明,该框架适用于广泛的数据长度和维度。因此,该框架可以应用于各种领域,如神经科学、生态学、金融、流体动力学、天气和灾害预防。