Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America.
PLoS One. 2011 Mar 31;6(3):e18295. doi: 10.1371/journal.pone.0018295.
Takens' theorem (1981) shows how lagged variables of a single time series can be used as proxy variables to reconstruct an attractor for an underlying dynamic process. State space reconstruction (SSR) from single time series has been a powerful approach for the analysis of the complex, non-linear systems that appear ubiquitous in the natural and human world. The main shortcoming of these methods is the phenomenological nature of attractor reconstructions. Moreover, applied studies show that these single time series reconstructions can often be improved ad hoc by including multiple dynamically coupled time series in the reconstructions, to provide a more mechanistic model. Here we provide three analytical proofs that add to the growing literature to generalize Takens' work and that demonstrate how multiple time series can be used in attractor reconstructions. These expanded results (Takens' theorem is a special case) apply to a wide variety of natural systems having parallel time series observations for variables believed to be related to the same dynamic manifold. The potential information leverage provided by multiple embeddings created from different combinations of variables (and their lags) can pave the way for new applied techniques to exploit the time-limited, but parallel observations of natural systems, such as coupled ecological systems, geophysical systems, and financial systems. This paper aims to justify and help open this potential growth area for SSR applications in the natural sciences.
Takens 定理(1981 年)展示了如何使用单个时间序列的滞后变量作为代理变量来重建潜在动态过程的吸引子。从单个时间序列进行状态空间重建(SSR)一直是分析自然界和人类世界中普遍存在的复杂非线性系统的有力方法。这些方法的主要缺点是吸引子重建的现象学性质。此外,应用研究表明,通过在重建中包含多个动态耦合的时间序列,可以专门改进这些单时间序列重建,以提供更机械的模型。在这里,我们提供了三个分析证明,这些证明增加了越来越多的文献,以推广 Takens 的工作,并展示了如何在吸引子重建中使用多个时间序列。这些扩展的结果(Takens 定理是一个特例)适用于各种具有平行时间序列观测的自然系统,这些观测的变量被认为与同一动态流形有关。从不同变量(及其滞后)组合创建的多个嵌入提供的潜在信息优势,可以为利用有限时间但平行的自然系统观测(如耦合生态系统、地球物理系统和金融系统)开辟新的应用技术途径。本文旨在为 SSR 在自然科学中的应用的这一潜在增长领域提供依据并帮助其发展。