Dai J, Krems R V
Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada.
J Chem Theory Comput. 2020 Mar 10;16(3):1386-1395. doi: 10.1021/acs.jctc.9b00700. Epub 2020 Feb 3.
Gaussian process (GP) regression has recently emerged as a powerful, system-agnostic tool for building global potential energy surfaces (PES) of polyatomic molecules. While the accuracy of GP models of PES increases with the number of potential energy points, so does the numerical difficulty of training and evaluating GP models. Here, we demonstrate an approach to improve the accuracy of global PES without increasing the number of energy points. We show that GP models of PES trained by a small number of energy points can be significantly improved by iteratively increasing the complexity of GP kernels. The composite kernels thus obtained maximize the accuracy of GP models for a given distribution of potential energy points. The accuracy can then be further improved by varying the training point distributions. We also show that GP models with composite kernels can be used for physical extrapolation of PES. We illustrate the approach by constructing the six-dimensional PES for HO. For the interpolation problem, we show that this algorithm produces a global six-dimensional PES in the energy range between 0 and 21 000 cm with the root-mean-square error 65.8 cm using only 500 randomly selected ab initio points as input. To illustrate extrapolation, we produce the PES at high energies using the energy points at low energies. We show that one can obtain an accurate global fit of the PES extending to 21 000 cm based on 1500 potential energy points at energies below 10 000 cm.
高斯过程(GP)回归最近已成为一种强大的、与系统无关的工具,用于构建多原子分子的全局势能面(PES)。虽然PES的GP模型的准确性随着势能点数量的增加而提高,但训练和评估GP模型的数值难度也随之增加。在这里,我们展示了一种在不增加能量点数量的情况下提高全局PES准确性的方法。我们表明,通过迭代增加GP核的复杂度,可以显著提高由少量能量点训练的PES的GP模型。由此获得的复合核在给定势能点分布的情况下最大化了GP模型的准确性。然后,通过改变训练点分布可以进一步提高准确性。我们还表明,具有复合核的GP模型可用于PES的物理外推。我们通过构建HO的六维PES来说明该方法。对于插值问题,我们表明该算法仅使用500个随机选择的从头算点作为输入,就在0至21000 cm的能量范围内生成了全局六维PES,均方根误差为65.8 cm。为了说明外推,我们使用低能量处的能量点生成高能量处的PES。我们表明,基于10000 cm以下能量处的1500个势能点,可以获得延伸至21000 cm的PES的准确全局拟合。