Suppr超能文献

神经网络与高斯过程回归在势能面表示中的比较研究:拟合质量和振动光谱精度的比较。

Neural networks vs Gaussian process regression for representing potential energy surfaces: A comparative study of fit quality and vibrational spectrum accuracy.

机构信息

Department of Mechanical Engineering, National University of Singapore, Block EA, #07-08, 9 Engineering Drive 1, Singapore 117576.

Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada.

出版信息

J Chem Phys. 2018 Jun 28;148(24):241702. doi: 10.1063/1.5003074.

Abstract

For molecules with more than three atoms, it is difficult to fit or interpolate a potential energy surface (PES) from a small number of (usually ab initio) energies at points. Many methods have been proposed in recent decades, each claiming a set of advantages. Unfortunately, there are few comparative studies. In this paper, we compare neural networks (NNs) with Gaussian process (GP) regression. We re-fit an accurate PES of formaldehyde and compare PES errors on the entire point set used to solve the vibrational Schrödinger equation, i.e., the only error that matters in quantum dynamics calculations. We also compare the vibrational spectra computed on the underlying reference PES and the NN and GP potential surfaces. The NN and GP surfaces are constructed with exactly the same points, and the corresponding spectra are computed with the same points and the same basis. The GP fitting error is lower, and the GP spectrum is more accurate. The best NN fits to 625/1250/2500 symmetry unique potential energy points have global PES root mean square errors (RMSEs) of 6.53/2.54/0.86 cm, whereas the best GP surfaces have RMSE values of 3.87/1.13/0.62 cm, respectively. When fitting 625 symmetry unique points, the error in the first 100 vibrational levels is only 0.06 cm with the best GP fit, whereas the spectrum on the best NN PES has an error of 0.22 cm, with respect to the spectrum computed on the reference PES. This error is reduced to about 0.01 cm when fitting 2500 points with either the NN or GP. We also find that the GP surface produces a relatively accurate spectrum when obtained based on as few as 313 points.

摘要

对于具有三个以上原子的分子,很难从少数(通常是从头算的)点处的能量拟合或内插势能面(PES)。近几十年来,已经提出了许多方法,每种方法都声称具有一组优势。不幸的是,很少有比较研究。在本文中,我们将神经网络(NN)与高斯过程(GP)回归进行比较。我们重新拟合了甲醛的精确 PES,并比较了用于求解振动薛定谔方程的整个点集上的 PES 误差,即量子动力学计算中唯一重要的误差。我们还比较了在基础参考 PES 以及 NN 和 GP 势能表面上计算的振动光谱。NN 和 GP 表面是使用完全相同的点构建的,相应的光谱是使用相同的点和相同的基计算的。GP 拟合误差较低,GP 光谱更准确。对于 625/1250/2500 个对称独特的势能点,最佳 NN 拟合的全局 PES 均方根误差(RMSE)分别为 6.53/2.54/0.86 cm,而最佳 GP 表面的 RMSE 值分别为 3.87/1.13/0.62 cm。在拟合 625 个对称独特点时,最佳 GP 拟合的前 100 个振动能级的误差仅为 0.06 cm,而最佳 NN PES 上的光谱相对于参考 PES 计算的光谱的误差为 0.22 cm。当使用 NN 或 GP 拟合 2500 个点时,该误差可分别降低到约 0.01 cm。我们还发现,基于 313 个点左右,GP 表面就可以生成相对准确的光谱。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验