Suppr超能文献

质子化咪唑二聚体51维势能面的高斯过程模型

Gaussian process model of 51-dimensional potential energy surface for protonated imidazole dimer.

作者信息

Sugisawa Hiroki, Ida Tomonori, Krems R V

机构信息

Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada.

Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan.

出版信息

J Chem Phys. 2020 Sep 21;153(11):114101. doi: 10.1063/5.0023492.

Abstract

The goal of the present work is to obtain accurate potential energy surfaces (PESs) for high-dimensional molecular systems with a small number of ab initio calculations in a system-agnostic way. We use probabilistic modeling based on Gaussian processes (GPs). We illustrate that it is possible to build an accurate GP model of a 51-dimensional PES based on 5000 randomly distributed ab initio calculations with a global accuracy of <0.2 kcal/mol. Our approach uses GP models with composite kernels designed to enhance the Bayesian information content and represents the global PES as a sum of a full-dimensional GP and several GP models for molecular fragments of lower dimensionality. We demonstrate the potency of these algorithms by constructing the global PES for the protonated imidazole dimer, a molecular system with 19 atoms. We illustrate that GP models thus constructed can extrapolate the PES from low energies (<10 000 cm), yielding a PES at high energies (>20 000 cm). This opens the prospect for new applications of GPs, such as mapping out phase transitions by extrapolation or accelerating Bayesian optimization, for high-dimensional physics and chemistry problems with a restricted number of inputs, i.e., for high-dimensional problems where obtaining training data is very difficult.

摘要

本工作的目标是以一种与系统无关的方式,通过少量的从头算计算获得高维分子系统的精确势能面(PES)。我们使用基于高斯过程(GPs)的概率建模。我们表明,基于5000个随机分布的从头算计算,可以构建一个51维PES的精确GP模型,全局精度<0.2 kcal/mol。我们的方法使用具有复合核的GP模型,旨在增强贝叶斯信息内容,并将全局PES表示为一个全维GP和几个低维分子片段的GP模型之和。我们通过构建质子化咪唑二聚体(一个具有19个原子的分子系统)的全局PES来证明这些算法的有效性。我们表明,这样构建的GP模型可以从低能量(<10000 cm)外推PES,在高能量(>20000 cm)处得到PES。这为GP的新应用开辟了前景,例如通过外推绘制相变或加速贝叶斯优化,用于输入数量有限的高维物理和化学问题,即获取训练数据非常困难的高维问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验