Richard Marie-Ingrid, Cornelius Thomas W, Lauraux Florian, Molin Jean-Baptiste, Kirchlechner Christoph, Leake Steven J, Carnis Jérôme, Schülli Tobias U, Thilly Ludovic, Thomas Olivier
Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397, Marseille, France.
ID01/ESRF, The European Synchrotron, 71 Avenue des Martyrs, Grenoble, 38043, Cedex, France.
Small. 2020 Feb;16(6):e1905990. doi: 10.1002/smll.201905990. Epub 2020 Jan 21.
Compression of micropillars is followed in situ by a quick nanofocused X-ray scanning microscopy technique combined with 3D reciprocal space mapping. Compared to other attempts using X-ray nanobeams, it avoids any motion or vibration that would lead to a destruction of the sample. The technique consists of scanning both the energy of the incident nanofocused X-ray beam and the in-plane translations of the focusing optics along the X-ray beam. Here, the approach by imaging the strain and lattice orientation of Si micropillars and their pedestals during in situ compression is demonstrated. Varying the energy of the incident beam instead of rocking the sample and mapping the focusing optics instead of moving the sample supplies a vibration-free measurement of the reciprocal space maps without removal of the mechanical load. The maps of strain and lattice orientation are in good agreement with the ones recorded by ordinary rocking-curve scans. Variable-wavelength quick scanning X-ray microscopy opens the route for in situ strain and tilt mapping toward more diverse and complex materials environments, especially where sample manipulation is difficult.
通过一种结合了三维倒易空间映射的快速纳米聚焦X射线扫描显微镜技术,对微柱的压缩过程进行原位跟踪。与其他使用X射线纳米束的尝试相比,它避免了任何会导致样品破坏的运动或振动。该技术包括扫描入射纳米聚焦X射线束的能量以及聚焦光学器件沿X射线束的面内平移。在此,展示了通过在原位压缩过程中对硅微柱及其基座的应变和晶格取向进行成像的方法。改变入射束的能量而不是摇动样品,以及对聚焦光学器件进行映射而不是移动样品,能够在不解除机械负载的情况下进行无振动的倒易空间映射测量。应变和晶格取向图与通过普通摇摆曲线扫描记录的图非常吻合。可变波长快速扫描X射线显微镜为在更复杂多样的材料环境中进行原位应变和倾斜映射开辟了道路,特别是在样品操作困难的情况下。