Department of Health Sciences, Inter Interdisciplinary Research Center of Autoimmune Diseases, UPO, 28100 Novara, Italy.
Department of Health Sciences, Inter Interdisciplinary Research Center of Autoimmune Diseases, UPO, 28100 Novara, Italy; Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, 28100 Novara, Italy.
J Control Release. 2020 Apr 10;320:112-124. doi: 10.1016/j.jconrel.2020.01.030. Epub 2020 Jan 18.
Inducible T-cell costimulator (ICOS) upon binding to its ligand (ICOSL) mediates adaptive immunity and antitumor response. Thus, antitumor therapies targeting the ICOS/ICOSL pathway hold great promise for cancer treatment. In this regard, ICOSL triggering by a soluble recombinant form of ICOS (ICOS-Fc) hampered adhesiveness and migration of dendritic, endothelial, and tumor cells in vitro. Furthermore, in vivo treatment with ICOS-Fc previously showed the capability to inhibit lung metastatization of ICOSL B16-F10 melanoma cells when injected intravenously in mice, but it failed to block the growth of established subcutaneous B16-F10 murine tumors. Thus, we asked whether passive targeting of solid tumors with ICOS-Fc-loaded biocompatible and biodegradable nanoparticles (NPs) could instead prove effectiveness in reducing tumor growth. Here, ICOS-Fc was loaded in two types of polymer nanoparticles, i.e. cross-linked β-cyclodextrin nanosponges (CDNS) and poly(lactic-co-glycolic acid) (PLGA) NPs and in vitro characterized. In vivo experiments showed that treatment of C57BL6/J mice with ICOS-Fc loaded into the two nanoformulations inhibits the growth of established subcutaneous B16-F10 tumors. This anticancer activity appears to involve both anti-angiogenic and immunoregulatory effects, as shown by decreased tumor vascularization and downmodulation of IL-10 and Foxp3, two markers of regulatory T cells (Tregs). Overall, the substantial in vivo anticancer activity of ICOS-Fc-loaded CDNS and PLGA NPs against different components of the tumor microenvironment makes these nanoformulations attractive candidates for future combination cancer therapy.
诱导型 T 细胞共刺激分子(ICOS)与其配体(ICOSL)结合后可介导适应性免疫和抗肿瘤反应。因此,靶向 ICOS/ICOSL 通路的抗肿瘤疗法有望成为癌症治疗的新方法。在这方面,可溶性重组形式的 ICOS(ICOS-Fc)可通过与 ICOSL 结合来抑制树突状细胞、内皮细胞和肿瘤细胞的黏附和迁移。此外,先前的体内研究表明,在小鼠中静脉注射 ICOSL B16-F10 黑色素瘤细胞时,ICOS-Fc 可抑制肺转移,但无法阻断已建立的皮下 B16-F10 肿瘤的生长。因此,我们想知道,用负载 ICOS-Fc 的生物相容性和可生物降解的纳米颗粒(NPs)被动靶向实体瘤是否能更有效地抑制肿瘤生长。在这里,我们将 ICOS-Fc 负载到两种聚合物纳米颗粒中,即交联β-环糊精纳米海绵(CDNS)和聚乳酸-羟基乙酸共聚物(PLGA)纳米颗粒中,并对其进行了体外研究。体内实验表明,用负载在两种纳米制剂中的 ICOS-Fc 治疗 C57BL6/J 小鼠可抑制已建立的皮下 B16-F10 肿瘤的生长。这种抗癌活性似乎涉及抗血管生成和免疫调节作用,这表现为肿瘤血管生成减少和 IL-10 和 Foxp3 下调,IL-10 和 Foxp3 是调节性 T 细胞(Tregs)的两个标志物。总之,ICOS-Fc 负载的 CDNS 和 PLGA NPs 对肿瘤微环境的不同成分具有显著的体内抗癌活性,使这些纳米制剂成为未来联合癌症治疗的有吸引力的候选药物。