Suppr超能文献

重整化群交叉在具有模式耦合项的场论临界动力学中的研究。

Renormalization group crossover in the critical dynamics of field theories with mode coupling terms.

机构信息

Istituto Sistemi Complessi, Consiglio Nazionale delle Ricerche, UOS Sapienza, 00185 Rome, Italy.

Dipartimento di Fisica, Università Sapienza, 00185 Rome, Italy.

出版信息

Phys Rev E. 2019 Dec;100(6-1):062130. doi: 10.1103/PhysRevE.100.062130.

Abstract

Motivated by the collective behavior of biological swarms, we study the critical dynamics of field theories with coupling between order parameter and conjugate momentum in the presence of dissipation. Under a fixed-network approximation, we perform a dynamical renormalization group calculation at one loop in the near-critical disordered region, and we show that the violation of momentum conservation generates a crossover between an unstable fixed point, characterized by a dynamic critical exponent z=d/2, and a stable fixed point with z=2. Interestingly, the two fixed points have different upper critical dimensions. The interplay between these two fixed points gives rise to a crossover in the critical dynamics of the system, characterized by a crossover exponent κ=4/d. The crossover is regulated by a conservation length scale R_{0}, given by the ratio between the transport coefficient and the effective friction, which is larger as the dissipation is smaller: Beyond R_{0}, the stable fixed point dominates, while at shorter distances dynamics is ruled by the unstable fixed point and critical exponent, a behavior which is all the more relevant in finite-size systems with weak dissipation. We run numerical simulations in three dimensions and find a crossover between the exponents z=3/2 and z=2 in the critical slowdown of the system, confirming the renormalization group results. From the biophysical point of view, our calculation indicates that in finite-size biological groups mode coupling terms in the equation of motion can significantly change the dynamical critical exponents even in the presence of dissipation, a step toward reconciling theory with experiments in natural swarms. Moreover, our result provides the scale within which fully conservative Bose-Einstein condensation is a good approximation in systems with weak symmetry-breaking terms violating number conservation, as quantum magnets or photon gases.

摘要

受生物群体的集体行为启发,我们研究了在存在耗散的情况下,具有序参量和共轭动量之间耦合的场论的临界动力学。在固定网络近似下,我们在近临界无序区域进行了一个循环的动态重整化群计算,结果表明,动量守恒的违反会导致不稳定固定点和稳定固定点之间的交叉,其中不稳定固定点的特征是动态临界指数 z=d/2,而稳定固定点的特征是 z=2。有趣的是,这两个固定点具有不同的上临界维度。这两个固定点之间的相互作用导致了系统临界动力学的交叉,其特征是交叉指数 κ=4/d。交叉由一个守恒长度尺度 R_0 来调节,R_0 由输运系数和有效摩擦之间的比值给出,随着耗散的减小,R_0 会增大:在 R_0 之外,稳定固定点占主导地位,而在较短的距离内,动力学由不稳定固定点和临界指数决定,这种行为在具有弱耗散的有限尺寸系统中更为相关。我们在三维空间中进行了数值模拟,并在系统的临界减速中发现了指数 z=3/2 和 z=2 之间的交叉,这证实了重整化群的结果。从生物物理的角度来看,我们的计算表明,在有限尺寸的生物群体中,即使存在耗散,运动方程中的模式耦合项也可以显著改变动力学临界指数,这是朝着在自然群体中协调理论与实验迈出的一步。此外,我们的结果提供了一个尺度,在这个尺度内,对于具有弱对称性破坏项的系统,完全保守的玻色-爱因斯坦凝聚在违反数守恒的情况下是一个很好的近似,例如量子磁体或光子气体。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验