Suppr超能文献

具有螺线管约束的模式耦合场论的动力学重整化群

Dynamical Renormalization Group for Mode-Coupling Field Theories with Solenoidal Constraint.

作者信息

Cavagna Andrea, Di Carlo Luca, Giardina Irene, Grigera Tomas, Pisegna Giulia, Scandolo Mattia

机构信息

Istituto Sistemi Complessi (ISC-CNR), Via dei Taurini 19, 00185 Rome, Italy.

Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 2, 00185 Rome, Italy.

出版信息

J Stat Phys. 2021;184(3):26. doi: 10.1007/s10955-021-02800-7. Epub 2021 Aug 28.

Abstract

The recent inflow of empirical data about the collective behaviour of strongly correlated biological systems has brought field theory and the renormalization group into the biophysical arena. Experiments on bird flocks and insect swarms show that social forces act on the particles' velocity through the generator of its rotations, namely the spin, indicating that mode-coupling field theories are necessary to reproduce the correct dynamical behaviour. Unfortunately, a theory for three coupled fields-density, velocity and spin-has a prohibitive degree of intricacy. A simplifying path consists in getting rid of density fluctuations by studying incompressible systems. This requires imposing a solenoidal constraint on the primary field, an unsolved problem even for equilibrium mode-coupling theories. Here, we perform an equilibrium dynamic renormalization group analysis of a mode-coupling field theory subject to a solenoidal constraint; using the classification of Halperin and Hohenberg, we can dub this case as a solenoidal Model G. We demonstrate that the constraint produces a new vertex that mixes static and dynamical coupling constants, and that this vertex is essential to grant the closure of the renormalization group structure and the consistency of dynamics with statics. Interestingly, although the solenoidal constraint leads to a modification of the static universality class, we find that it does not change the dynamical universality class, a result that seems to represent an exception to the general rule that dynamical universality classes are narrower than static ones. Our results constitute a solid stepping stone in the admittedly large chasm towards developing an off-equilibrium mode-coupling theory of biological groups.

摘要

近期,有关强关联生物系统集体行为的实证数据大量涌现,这使得场论和重整化群进入了生物物理领域。对鸟群和昆虫群的实验表明,社会力通过粒子旋转的生成元(即自旋)作用于粒子速度,这表明模式耦合场论对于重现正确的动力学行为是必要的。不幸的是,一个关于密度、速度和自旋三个耦合场的理论,其复杂程度令人望而却步。一条简化路径是通过研究不可压缩系统来消除密度涨落。这需要对主场施加一个无散度约束,即使对于平衡模式耦合理论,这也是一个尚未解决的问题。在这里,我们对一个受无散度约束的模式耦合场论进行了平衡动态重整化群分析;利用哈尔珀林和霍亨贝格的分类,我们可以将这种情况称为无散度模型G。我们证明,该约束产生了一个混合静态和动态耦合常数的新顶点,并且这个顶点对于确保重整化群结构的封闭以及动力学与静力学的一致性至关重要。有趣的是,尽管无散度约束导致了静态普适类的改变,但我们发现它并没有改变动态普适类,这一结果似乎是动态普适类比静态普适类更窄这一一般规则的一个例外。我们的结果为朝着发展生物群体的非平衡模式耦合理论这一公认的巨大鸿沟迈出了坚实的一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6388/8550108/c9618c5751bf/10955_2021_2800_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验