Suppr超能文献

精子鞭毛的流致屈曲动力学。

Flow-induced buckling dynamics of sperm flagella.

机构信息

Department of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, USA.

Department of Mechanical Engineering, Tufts University, 200 College Avenue, Medford, Massachusetts 02155, USA.

出版信息

Phys Rev E. 2019 Dec;100(6-1):063107. doi: 10.1103/PhysRevE.100.063107.

Abstract

The swimming sperm of many external fertilizing marine organisms face complex fluid flows during their search for egg cells. Aided by chemotaxis, relatively weak flows are known to enhance sperm-egg fertilization rates through hydrodynamic guidance. However, strong flows have the potential to mechanically inhibit flagellar motility through elastohydrodynamic interactions-a phenomenon that remains poorly understood. Here we explore the effects of flow on the buckling dynamics of sperm flagella in an extensional flow through detailed numerical simulations, which are informed by microfluidic experiments and high-speed imaging. Compressional fluid forces lead to rich buckling dynamics of the sperm flagellum beyond a critical dimensionless sperm number, Sp, which represents the ratio of viscous force to elastic force. For nonmotile sperm, the maximum buckling curvature and the number of buckling locations, or buckling mode, increase with increasing sperm number. In contrast, motile sperm exhibit a local flagellar curvature due to the propagation of bending waves along the flagellum. In compressional flow, this preexisting curvature acts as a precursor for buckling, which enhances local curvature without creating new buckling modes and leads to asymmetric beating. However, in extensional flow, flagellar beating remains symmetric with a smaller head yawing amplitude due to tensile forces. The flagellar beating frequency also influences the maximum curvature of motile sperm by facilitating sperm reorientation relative to the compressional axis of the flow near stagnation points. These combined simulations and experiments directly illustrate the microscopic elastohydrodynamic mechanisms responsible for inhibiting flagellar motility in flow and have possible implications for our understanding of external fertilization in dynamic marine systems.

摘要

许多进行体外受精的海洋生物的游动精子在寻找卵细胞的过程中会面临复杂的流体流动。在趋化作用的辅助下,人们已知相对较弱的流动可以通过流体动力导向提高精子-卵子受精率。然而,强流有可能通过弹性流体动力相互作用机械地抑制鞭毛运动——这一现象仍未得到很好的理解。在这里,我们通过详细的数值模拟,探索了流动对伸展流中精子鞭毛屈曲动力学的影响,这些模拟是通过微流控实验和高速成像得到的。压缩流体力导致了精子鞭毛的丰富屈曲动力学,超过了一个临界无量纲数 Sp,它代表了粘性力与弹性力的比值。对于非运动精子,最大屈曲曲率和屈曲位置的数量(或屈曲模式)随着精子数的增加而增加。相比之下,运动精子由于沿鞭毛传播的弯曲波而表现出局部的鞭毛曲率。在压缩流中,这种预先存在的曲率作为屈曲的前兆,在不产生新的屈曲模式的情况下增强局部曲率,并导致不对称的拍打。然而,在伸展流中,由于拉伸力的作用,鞭毛的拍打仍然是对称的,头部偏航幅度较小。鞭毛的拍打频率也通过促进精子相对于流动的压缩轴在停滞点附近重新定向,影响运动精子的最大曲率。这些组合的模拟和实验直接说明了在流动中抑制鞭毛运动的微观弹性流体动力学机制,并可能对我们理解动态海洋系统中的体外受精有一定的启示。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验