Suppr超能文献

广泛分析移位模版的晶格 Boltzmann 方法。

Extensive analysis of the lattice Boltzmann method on shifted stencils.

机构信息

Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg "Otto von Guericke," D-39106 Magdeburg, Germany.

Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, 91192 Gif-sur-Yvette Cedex, France.

出版信息

Phys Rev E. 2019 Dec;100(6-1):063301. doi: 10.1103/PhysRevE.100.063301.

Abstract

Standard lattice Boltzmann methods (LBMs) are based on a symmetric discretization of the phase space, which amounts to study the evolution of particle distribution functions (PDFs) in a reference frame at rest. This choice induces a number of limitations when the simulated flow speed gets closer to the sound speed, such as velocity-dependent transport coefficients. The latter issue is usually referred to as a Galilean invariance defect. To restore the Galilean invariance of LBMs, it was proposed to study the evolution of PDFs in a comoving reference frame by relying on asymmetric shifted lattices [N. Frapolli, S. S. Chikatamarla, and I. V. Karlin, Phys. Rev. Lett. 117, 010604 (2016)].PRLTAO0031-900710.1103/PhysRevLett.117.010604 From the numerical viewpoint, this corresponds to overcoming the rather restrictive Courant-Friedrichs-Lewy conditions on standard LBMs and modeling compressible flows while keeping memory consumption and processing costs to a minimum (therefore using the standard first-neighbor stencils). In the present work systematic physical error evaluations and stability analyses are conducted for different discrete equilibrium distribution functions (EDFs) and collision models. Thanks to them, it is possible to (1) better understand the effect of this solution on both physics and stability, (2) assess its viability as a way to extend the validity range of LBMs, and (3) quantify the importance of the reference state as compared to other parameters such as the equilibrium state and equilibration path. The results clearly show that, in theory, the concept of shifted lattices allows the scheme to deal with arbitrarily high values of the nondimensional velocity. Furthermore, just like the zero-Mach flow for the standard stencils, it is observed that setting the shift velocity to the fluid velocity results in optimal physical and numerical properties. In addition, a detailed analysis of the obtained results shows that the properties of different collision models and EDFs remain unchanged under the shift of stencil. In other words, by introducing a velocity shift in the stencil, the optimal operating point, in terms of physics and numerics, will also be shifted by the same vector regardless of the EDF or collision model considered. Eventually, while limited to the D2Q9 stencil with the nine possible first-neighbor shifts, the present study and corresponding conclusions can be extended to other stencils and velocity shifts in a straightforward manner.

摘要

标准格子玻尔兹曼方法(LBMs)基于相空间的对称离散化,这意味着在静止参考系中研究粒子分布函数(PDFs)的演化。当模拟流速度接近声速时,这种选择会导致许多限制,例如速度相关的输运系数。后者通常被称为伽利略不变性缺陷。为了恢复 LBMs 的伽利略不变性,有人提出通过依赖于不对称移位晶格来研究 PDF 在共动参考系中的演化[N. Frapolli, S. S. Chikatamarla 和 I. V. Karlin, Phys. Rev. Lett. 117, 010604 (2016)]。PRLTAO0031-900710.1103/PhysRevLett.117.010604 从数值角度来看,这对应于克服标准 LBMs 上相当严格的柯朗-弗里德里希-列维条件,并在保持最小内存消耗和处理成本的情况下对可压缩流进行建模(因此使用标准的第一近邻网格)。在本工作中,对不同的离散平衡分布函数(EDFs)和碰撞模型进行了系统的物理误差评估和稳定性分析。借助它们,可以(1)更好地理解该解对物理和稳定性的影响,(2)评估其作为扩展 LBMs 有效性范围的方法的可行性,(3)量化参考状态与其他参数(如平衡状态和平衡路径)的重要性。结果清楚地表明,从理论上讲,移位晶格的概念允许该方案处理任意高的无量纲速度值。此外,就像标准网格的零马赫流一样,观察到将移位速度设置为流体速度会导致最佳的物理和数值特性。此外,对获得的结果进行的详细分析表明,在移位网格的情况下,不同碰撞模型和 EDF 的特性保持不变。换句话说,通过在网格中引入速度移位,无论考虑的 EDF 或碰撞模型如何,最佳操作点(在物理和数值方面)也将通过相同的向量移位。最终,虽然仅限于具有九个可能第一近邻移位的 D2Q9 网格,但可以以直接的方式将本研究和相应结论扩展到其他网格和速度移位。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验