Suppr超能文献

用于高通量和灵敏光流体微热测量的染料掺杂氧化锌微胶囊

Dye-Doped ZnO Microcapsules for High Throughput and Sensitive Optofluidic Micro-Thermometry.

作者信息

Ghifari Najla, Rassouk Sara, Hayat Zain, Taleb Abdelhafed, Chahboun Adil, El Abed Abdel I

机构信息

Laboratoire de Photonique Quantique et Moléculaire (LPQM), UMR 8537, Ecole Normale Supérieure Paris Saclay, CentraleSupélec, CNRS, Université Paris-Saclay, 94235 Cachan, France.

Laboratoire des Couches Minces et Nanomatériaux (CMN), FST Tanger, Université Abdelmalek Essaadi, 90000 Tangier, Morocco.

出版信息

Micromachines (Basel). 2020 Jan 17;11(1):100. doi: 10.3390/mi11010100.

Abstract

The main objective of this work is to show the proof of concept of a new optofluidic method for high throughput fluorescence-based thermometry, which enables the measure of temperature inside optofluidic microsystems at the millisecond (ms) time scale (high throughput). We used droplet microfluidics to produce highly monodisperse microspheres from dispersed zinc oxide (ZnO) nanocrystals and doped them with rhodamine B (RhB) or/and rhodamine 6G (Rh6G). The fluorescence intensities of these two dyes are known to depend linearly on temperature but in two opposite manner. Their mixture enables for the construction of reference probe whose fluorescence does not depend practically on temperature. The use of zinc oxide microparticles as temperature probes in microfluidic channels has two main advantages: (i) avoid the diffusion and the adsorption of the dyes inside the walls of the microfluidic channels and (ii) enhance dissipation of the heat generated by the focused incident laser beam thanks to the high thermal conductivity of this material. Our results show that the fluorescence intensity of RhB decreases linearly with increasing temperature at a rate of about -2.2%/°C, in a very good agreement with the literature. In contrast, we observed for the first time a nonlinear change of the fluorescence intensity of Rh6G in ZnO microparticles with a minimum intensity at a temperature equal to 40 °C. This behaviour is reproducible and was observed only with ZnO microparticles doped with Rh6G.

摘要

这项工作的主要目标是展示一种基于荧光的高通量热测量新光流体方法的概念验证,该方法能够在毫秒(ms)时间尺度(高通量)下测量光流体微系统内部的温度。我们使用液滴微流控技术从分散的氧化锌(ZnO)纳米晶体中制备高度单分散的微球,并用罗丹明B(RhB)或/和罗丹明6G(Rh6G)对其进行掺杂。已知这两种染料的荧光强度与温度呈线性关系,但方式相反。它们的混合物能够构建一种参考探针,其荧光实际上不依赖于温度。在微流控通道中使用氧化锌微粒作为温度探针有两个主要优点:(i)避免染料在微流控通道壁内的扩散和吸附,(ii)由于这种材料的高导热性,增强聚焦入射激光束产生的热量的耗散。我们的结果表明,RhB的荧光强度随温度升高呈线性下降,速率约为-2.2%/°C,与文献报道非常吻合。相比之下,我们首次观察到ZnO微粒中Rh6G的荧光强度在温度等于40°C时出现非线性变化,且强度最小。这种行为是可重复的,并且仅在掺杂Rh6G的ZnO微粒中观察到。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/573f/7019242/445be7cea336/micromachines-11-00100-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验