Alameh Mohamad, Abbass Yahya, Ibrahim Ali, Valle Maurizio
Department of Electrical, Electronic and Telecommunication Engineering and Naval Architecture (DITEN)-University of Genoa, via Opera Pia 11a, 16145 Genova, Italy.
Department of Electrical and Electronics Engineering, Lebanese International University (LIU), Beirut 1105, Lebanon.
Micromachines (Basel). 2020 Jan 18;11(1):103. doi: 10.3390/mi11010103.
Embedding machine learning methods into the data decoding units may enable the extraction of complex information making the tactile sensing systems intelligent. This paper presents and compares the implementations of a convolutional neural network model for tactile data decoding on various hardware platforms. Experimental results show comparable classification accuracy of 90.88% for Model 3, overcoming similar state-of-the-art solutions in terms of time inference. The proposed implementation achieves a time inference of 1.2 ms while consuming around 900 μ J. Such an embedded implementation of intelligent tactile data decoding algorithms enables tactile sensing systems in different application domains such as robotics and prosthetic devices.
将机器学习方法嵌入数据解码单元可能会使复杂信息得以提取,从而使触觉传感系统变得智能。本文介绍并比较了卷积神经网络模型在各种硬件平台上进行触觉数据解码的实现方式。实验结果表明,模型3的分类准确率为90.88%,在时间推理方面优于类似的现有先进解决方案。所提出的实现方式在消耗约900 μJ能量的同时,时间推理为1.2毫秒。这种智能触觉数据解码算法的嵌入式实现方式可应用于机器人技术和假肢设备等不同应用领域的触觉传感系统。