Suppr超能文献

使用具有逐像素和物理精度评估的先进卷积神经网络对砂岩微观断层图像分割进行比较分析。

Comparative analysis of sandstone microtomographic image segmentation using advanced convolutional neural networks with pixelwise and physical accuracy evaluation.

作者信息

Hayatdavoudi Mazaher, Niri Mohammad Emami, Kalhor Ahmad

机构信息

Institute of Petroleum Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.

School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.

出版信息

Sci Rep. 2025 Jul 1;15(1):22164. doi: 10.1038/s41598-025-07211-2.

Abstract

The introduction of deep learning techniques has revolutionized the automated segmentation of digital rock images. These methods enable precise evaluations of critical properties such as porosity and fluid flow characteristics, thereby enhancing the efficiency of reservoir characterization. This study explores the application of state-of-the-art Convolutional Neural Network (CNN) architectures for analyzing rock micro-CT images, aiming to enhance reservoir characterization efficiency. Specifically, we implement various deep learning models, including Fully Convolutional Networks, Encoder-Decoder Models, Multi-Scale Networks, Dilated Convolution Models, and Attention-Based Models. The segmentation performance of these CNN architectures is benchmarked against the traditional Otsu thresholding method using a dataset of 5,000 2D slices of ten distinct sandstone types, each with a voxel resolution of 2.25 × 2.25 × 2.25 µm. Our evaluation utilizes pixel-wise accuracy metrics such as F1-score, binary-IOU, Recall, and Precision. To replicate the physics of pore-scale fluid movement, various numerical simulation methods such as the Lattice Boltzmann Method (LBM), Pore Network Modeling (PNM), and Computational Fluid Dynamics (CFD) are employed to predict the permeability and rock formation factor of a blind sample, using CNNs for image segmentation. Our findings reveal that advanced CNNs significantly outperform the Otsu method in both pixel-wise segmentation accuracy and fluid flow simulation performance. Among all CNNs, EfficientNetB0-Unet, VGG16-Unet, and Enet exhibit exceptional performance in segmenting complex pore structures, as evidenced by their high F1-scores and binary-IOU metrics as well as accurate predictions of porosity, permeability, and formation factor.

摘要

深度学习技术的引入彻底改变了数字岩石图像的自动分割。这些方法能够精确评估孔隙率和流体流动特性等关键属性,从而提高储层表征的效率。本研究探索了最先进的卷积神经网络(CNN)架构在分析岩石微CT图像中的应用,旨在提高储层表征效率。具体而言,我们实现了各种深度学习模型,包括全卷积网络、编码器-解码器模型、多尺度网络、扩张卷积模型和基于注意力的模型。使用包含十种不同砂岩类型的5000个二维切片的数据集,将这些CNN架构的分割性能与传统的大津阈值法进行基准测试,每个切片的体素分辨率为2.25×2.25×2.25μm。我们的评估使用像素级精度指标,如F1分数、二元交并比、召回率和精确率。为了复制孔隙尺度流体运动的物理过程,采用了各种数值模拟方法,如格子玻尔兹曼方法(LBM)、孔隙网络建模(PNM)和计算流体动力学(CFD),使用CNN进行图像分割来预测盲样本的渗透率和地层因数。我们的研究结果表明,先进的CNN在像素级分割精度和流体流动模拟性能方面均显著优于大津方法。在所有CNN中,EfficientNetB0-Unet、VGG16-Unet和Enet在分割复杂孔隙结构方面表现出色,其高F1分数和二元交并比指标以及对孔隙率、渗透率和地层因数的准确预测证明了这一点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d3d/12218276/971de582c4d4/41598_2025_7211_Fig1a_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验