Suppr超能文献

用于微机械的图像处理中神经网络的非线性超参数优化

Nonlinear Hyperparameter Optimization of a Neural Network in Image Processing for Micromachines.

作者信息

Shen Mingming, Yang Jing, Li Shaobo, Zhang Ansi, Bai Qiang

机构信息

School of Mechanical Engineering, Guizhou University, Guiyang 550025, China.

School of Mechanical & Electrical Engineering, Guizhou Normal University, Guiyang 550025, China.

出版信息

Micromachines (Basel). 2021 Nov 30;12(12):1504. doi: 10.3390/mi12121504.

Abstract

Deep neural networks are widely used in the field of image processing for micromachines, such as in 3D shape detection in microelectronic high-speed dispensing and object detection in microrobots. It is already known that hyperparameters and their interactions impact neural network model performance. Taking advantage of the mathematical correlations between hyperparameters and the corresponding deep learning model to adjust hyperparameters intelligently is the key to obtaining an optimal solution from a deep neural network model. Leveraging these correlations is also significant for unlocking the "black box" of deep learning by revealing the mechanism of its mathematical principle. However, there is no complete system for studying the combination of mathematical derivation and experimental verification methods to quantify the impacts of hyperparameters on the performances of deep learning models. Therefore, in this paper, the authors analyzed the mathematical relationships among four hyperparameters: the learning rate, batch size, dropout rate, and convolution kernel size. A generalized multiparameter mathematical correlation model was also established, which showed that the interaction between these hyperparameters played an important role in the neural network's performance. Different experiments were verified by running convolutional neural network algorithms to validate the proposal on the MNIST dataset. Notably, this research can help establish a universal multiparameter mathematical correlation model to guide the deep learning parameter adjustment process.

摘要

深度神经网络在微机器图像处理领域有着广泛应用,比如在微电子高速点胶中的三维形状检测以及微型机器人中的目标检测。众所周知,超参数及其相互作用会影响神经网络模型的性能。利用超参数与相应深度学习模型之间的数学关联来智能调整超参数,是从深度神经网络模型中获得最优解的关键。利用这些关联对于通过揭示其数学原理机制来打开深度学习的“黑箱”也具有重要意义。然而,目前尚无完整的系统来研究将数学推导与实验验证方法相结合,以量化超参数对深度学习模型性能的影响。因此,在本文中,作者分析了四个超参数之间的数学关系:学习率、批量大小、随机失活率和卷积核大小。还建立了一个广义多参数数学关联模型,该模型表明这些超参数之间的相互作用在神经网络性能中起着重要作用。通过运行卷积神经网络算法进行了不同的实验,以在MNIST数据集上验证该提议。值得注意的是,这项研究有助于建立一个通用的多参数数学关联模型,以指导深度学习参数调整过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b149/8704841/3ef7d2034e9f/micromachines-12-01504-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验