Suppr超能文献

生物材料的能带隙研究:一种用于医疗电子设备生物相容性的综合材料方法。

Energy Band Gap Investigation of Biomaterials: A Comprehensive Material Approach for Biocompatibility of Medical Electronic Devices.

作者信息

Shafiee Ashkan, Ghadiri Elham, Kassis Jareer, Williams David, Atala Anthony

机构信息

Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, NC 27101, USA.

Department of Chemistry, Wake Forest University, NC 27109, USA.

出版信息

Micromachines (Basel). 2020 Jan 18;11(1):105. doi: 10.3390/mi11010105.

Abstract

Over the past ten years, tissue engineering has witnessed significant technological and scientific advancements. Progress in both stem cell science and additive manufacturing have established new horizons in research and are poised to bring improvements in healthcare closer to reality. However, more sophisticated indications such as the scale-up fabrication of biological structures (e.g., human tissues and organs) still require standardization. To that end, biocompatible electronics may be helpful in the biofabrication process. Here, we report the results of our systematic exploration to seek biocompatible/degradable functional electronic materials that could be used for electronic device fabrications. We investigated the electronic properties of various biomaterials in terms of energy diagrams, and the energy band gaps of such materials were obtained using optical absorption spectroscopy. The main component of an electronic device is manufactured with semiconductor materials (i.e., E between 1 to 2.5 eV). Most biomaterials showed an optical absorption edge greater than 2.5 eV. For example, fibrinogen, glycerol, and gelatin showed values of 3.54, 3.02, and 3.0 eV, respectively. Meanwhile, a few materials used in the tissue engineering field were found to be semiconductors, such as the phenol red in cell culture media (1.96 eV energy band gap). The data from this research may be used to fabricate biocompatible/degradable electronic devices for medical applications.

摘要

在过去十年中,组织工程学取得了重大的技术和科学进展。干细胞科学和增材制造的进步为研究开辟了新视野,并有望使医疗保健方面的改善更接近现实。然而,更复杂的应用,如生物结构(如人体组织和器官)的大规模制造,仍需要标准化。为此,生物相容性电子器件可能有助于生物制造过程。在此,我们报告了我们系统探索的结果,以寻找可用于电子器件制造的生物相容性/可降解功能电子材料。我们根据能量图研究了各种生物材料的电子特性,并使用光吸收光谱法获得了这些材料的能带隙。电子器件的主要部件由半导体材料制造(即E在1至2.5 eV之间)。大多数生物材料的光吸收边缘大于2.5 eV。例如,纤维蛋白原、甘油和明胶的光吸收边缘值分别为3.54、3.02和3.0 eV。同时,发现组织工程领域使用的一些材料是半导体,如细胞培养基中的酚红(能带隙为1.96 eV)。这项研究的数据可用于制造用于医疗应用的生物相容性/可降解电子器件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/067d/7019985/94be570000b6/micromachines-11-00105-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验