Suppr超能文献

3D打印连续碳纤维增强塑料在压力下的性能

Performance of 3D-Printed Continuous-Carbon-Fiber-Reinforced Plastics with Pressure.

作者信息

Zhang Jun, Zhou Zude, Zhang Fan, Tan Yuegang, Tu Yiwen, Yang Baojun

机构信息

School of Mechanical and Electronic Engineering, Wuhan University of Technology, WuHan 430070, China;

Chongqing Huashu Robotics Co., Ltd., FoShan 528234, China.

出版信息

Materials (Basel). 2020 Jan 19;13(2):471. doi: 10.3390/ma13020471.

Abstract

Fused Deposition Modeling (FDM) has been investigated as a low-cost manufacturing method for fiber-reinforced composites. The traditional and mature technology for manufacturing continuous-carbon-fiber-reinforced plastics is Automated Fiber Placement (AFP), which uses a consolidation roller and an autoclave process to improve the quality of parts. Compared to AFP, FDM is simple in design and operation but lacks the ability to pressurize and heat the model. In this work, a novel method for printing continuous carbon-fiber-reinforced plastics with a pressure roller was investigated. First, the path processing of the pressure roller was researched, which will reduce the number of rotations of the pressure roller and increase the service life of the equipment and the efficiency of printing. Thereafter, three specimens were printed under different pressures and the tensile and bending strength of specimens were tested. The tensile strength and bending strength of specimens were enhanced to 644.8 MPa and 401.24 MPa by increasing the pressure, compared to the tensile strength and bending strength of specimens without pressure of 109.9 MPa and 163.13 MPa. However, excessive pressure will destroy the path of the continuous carbon fiber (CCF) and the surface quality of the model, and may even lead to printing failure.

摘要

熔融沉积建模(FDM)已被作为一种用于纤维增强复合材料的低成本制造方法进行研究。制造连续碳纤维增强塑料的传统且成熟的技术是自动纤维铺放(AFP),它使用一个固结辊和一个热压罐工艺来提高零件质量。与AFP相比,FDM在设计和操作上较为简单,但缺乏对模型进行加压和加热的能力。在这项工作中,研究了一种使用压力辊打印连续碳纤维增强塑料的新方法。首先,研究了压力辊的路径处理,这将减少压力辊的旋转次数,提高设备的使用寿命和打印效率。此后,在不同压力下打印了三个试样,并测试了试样的拉伸强度和弯曲强度。与无压力试样的拉伸强度109.9MPa和弯曲强度163.13MPa相比,通过增加压力,试样的拉伸强度和弯曲强度分别提高到了644.8MPa和401.24MPa。然而,过大的压力会破坏连续碳纤维(CCF)的路径和模型的表面质量,甚至可能导致打印失败。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec59/7014395/512ae6e3c4d6/materials-13-00471-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验