Suppr超能文献

评估在平滑参数变化下非线性动力学的可预测性。

Assessing the predictability of nonlinear dynamics under smooth parameter changes.

机构信息

Department of Civil and Environmental Engineering, MIT, Cambridge, MA, USA.

DCI, LLC, 201 Spear Street, Suite 250, San Francisco, CA, USA.

出版信息

J R Soc Interface. 2020 Jan;17(162):20190627. doi: 10.1098/rsif.2019.0627. Epub 2020 Jan 22.

Abstract

Short-term forecasts of nonlinear dynamics are important for risk-assessment studies and to inform sustainable decision-making for physical, biological and financial problems, among others. Generally, the accuracy of short-term forecasts depends upon two main factors: the capacity of learning algorithms to generalize well on unseen data and the intrinsic predictability of the dynamics. While generalization skills of learning algorithms can be assessed with well-established methods, estimating the predictability of the underlying nonlinear generating process from empirical time series remains a big challenge. Here, we show that, in changing environments, the predictability of nonlinear dynamics can be associated with the time-varying stability of the system with respect to smooth changes in model parameters, i.e. its local structural stability. Using synthetic data, we demonstrate that forecasts from locally structurally unstable states in smoothly changing environments can produce significantly large prediction errors, and we provide a systematic methodology to identify these states from data. Finally, we illustrate the practical applicability of our results using an empirical dataset. Overall, this study provides a framework to associate an uncertainty level with short-term forecasts made in smoothly changing environments.

摘要

短期非线性动力学预测对于风险评估研究以及为物理、生物和金融等问题提供可持续决策信息非常重要。一般来说,短期预测的准确性取决于两个主要因素:学习算法在未见数据上良好泛化的能力和动力学的内在可预测性。虽然学习算法的泛化能力可以用成熟的方法来评估,但从经验时间序列中估计潜在非线性生成过程的可预测性仍然是一个巨大的挑战。在这里,我们表明,在不断变化的环境中,非线性动力学的可预测性可以与系统相对于模型参数平滑变化的时变稳定性相关联,即其局部结构稳定性。使用合成数据,我们证明了在平滑变化的环境中来自局部结构不稳定状态的预测会产生显著的大预测误差,并且我们提供了一种从数据中识别这些状态的系统方法。最后,我们使用经验数据集说明了我们结果的实际适用性。总的来说,这项研究为在平滑变化的环境中进行短期预测提供了一个与不确定性水平相关联的框架。

相似文献

4
Parameter estimation and forecasting for multiplicative log-normal cascades.乘性对数正态级联的参数估计与预测
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Apr;85(4 Pt 2):046114. doi: 10.1103/PhysRevE.85.046114. Epub 2012 Apr 20.
8
Parameter estimation through ignorance.通过无知进行参数估计。
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jul;86(1 Pt 2):016213. doi: 10.1103/PhysRevE.86.016213. Epub 2012 Jul 16.

本文引用的文献

4
Global environmental drivers of influenza.流感的全球环境驱动因素
Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):13081-13086. doi: 10.1073/pnas.1607747113. Epub 2016 Oct 31.
8
Nonlinear time-series analysis revisited.非线性时间序列分析再探。
Chaos. 2015 Sep;25(9):097610. doi: 10.1063/1.4917289.
9
Species fluctuations sustained by a cyclic succession at the edge of chaos.物种波动由混沌边缘的周期性演替维持。
Proc Natl Acad Sci U S A. 2015 May 19;112(20):6389-94. doi: 10.1073/pnas.1421968112. Epub 2015 Apr 20.
10
How structurally stable are global socioeconomic systems?全球社会经济系统在结构上有多稳定?
J R Soc Interface. 2014 Nov 6;11(100):20140693. doi: 10.1098/rsif.2014.0693.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验