Department of Civil and Environmental Engineering, MIT, Cambridge, MA, USA.
DCI, LLC, 201 Spear Street, Suite 250, San Francisco, CA, USA.
J R Soc Interface. 2020 Jan;17(162):20190627. doi: 10.1098/rsif.2019.0627. Epub 2020 Jan 22.
Short-term forecasts of nonlinear dynamics are important for risk-assessment studies and to inform sustainable decision-making for physical, biological and financial problems, among others. Generally, the accuracy of short-term forecasts depends upon two main factors: the capacity of learning algorithms to generalize well on unseen data and the intrinsic predictability of the dynamics. While generalization skills of learning algorithms can be assessed with well-established methods, estimating the predictability of the underlying nonlinear generating process from empirical time series remains a big challenge. Here, we show that, in changing environments, the predictability of nonlinear dynamics can be associated with the time-varying stability of the system with respect to smooth changes in model parameters, i.e. its local structural stability. Using synthetic data, we demonstrate that forecasts from locally structurally unstable states in smoothly changing environments can produce significantly large prediction errors, and we provide a systematic methodology to identify these states from data. Finally, we illustrate the practical applicability of our results using an empirical dataset. Overall, this study provides a framework to associate an uncertainty level with short-term forecasts made in smoothly changing environments.
短期非线性动力学预测对于风险评估研究以及为物理、生物和金融等问题提供可持续决策信息非常重要。一般来说,短期预测的准确性取决于两个主要因素:学习算法在未见数据上良好泛化的能力和动力学的内在可预测性。虽然学习算法的泛化能力可以用成熟的方法来评估,但从经验时间序列中估计潜在非线性生成过程的可预测性仍然是一个巨大的挑战。在这里,我们表明,在不断变化的环境中,非线性动力学的可预测性可以与系统相对于模型参数平滑变化的时变稳定性相关联,即其局部结构稳定性。使用合成数据,我们证明了在平滑变化的环境中来自局部结构不稳定状态的预测会产生显著的大预测误差,并且我们提供了一种从数据中识别这些状态的系统方法。最后,我们使用经验数据集说明了我们结果的实际适用性。总的来说,这项研究为在平滑变化的环境中进行短期预测提供了一个与不确定性水平相关联的框架。