Liapis Charalampos M, Karanikola Aikaterini, Kotsiantis Sotiris
Department of Mathematics, University of Patras, 26504 Patras, Greece.
Entropy (Basel). 2021 Nov 29;23(12):1603. doi: 10.3390/e23121603.
In practice, time series forecasting involves the creation of models that generalize data from past values and produce future predictions. Moreover, regarding financial time series forecasting, it can be assumed that the procedure involves phenomena partly shaped by the social environment. Thus, the present work is concerned with the study of the use of sentiment analysis methods in data extracted from social networks and their utilization in multivariate prediction architectures that involve financial data. Through an extensive experimental process, 22 different input setups using such extracted information were tested, over a total of 16 different datasets, under the schemes of 27 different algorithms. The comparisons were structured under two case studies. The first concerns possible improvements in the performance of the forecasts in light of the use of sentiment analysis systems in time series forecasting. The second, having as a framework all the possible versions of the above configuration, concerns the selection of the methods that perform best. The results, as presented by various illustrations, indicate, on the one hand, the conditional improvement of predictability after the use of specific sentiment setups in long-term forecasts and, on the other, a universal predominance of long short-term memory architectures.
在实践中,时间序列预测涉及创建模型,这些模型对过去的值进行数据归纳并做出未来预测。此外,对于金融时间序列预测,可以假设该过程涉及部分受社会环境影响的现象。因此,本研究关注从社交网络提取的数据中情感分析方法的使用,以及这些方法在涉及金融数据的多变量预测架构中的应用。通过广泛的实验过程,在27种不同算法的方案下,对总共16个不同数据集上使用此类提取信息的22种不同输入设置进行了测试。比较是在两个案例研究的框架下进行的。第一个案例研究关注在时间序列预测中使用情感分析系统对预测性能的可能改进。第二个案例研究以上述配置的所有可能版本为框架,关注性能最佳的方法的选择。各种图表呈现的结果表明,一方面,在长期预测中使用特定情感设置后预测能力有条件地提高,另一方面,长短期记忆架构普遍占主导地位。