Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA.
Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15213, USA.
Sci Transl Med. 2020 Jan 22;12(527). doi: 10.1126/scitranslmed.aav7753.
Severe injuries to peripheral nerves are challenging to repair. Standard-of-care treatment for nerve gaps >2 to 3 centimeters is autografting; however, autografting can result in neuroma formation, loss of sensory function at the donor site, and increased operative time. To address the need for a synthetic nerve conduit to treat large nerve gaps, we investigated a biodegradable poly(caprolactone) (PCL) conduit with embedded double-walled polymeric microspheres encapsulating glial cell line-derived neurotrophic factor (GDNF) capable of providing a sustained release of GDNF for >50 days in a 5-centimeter nerve defect in a rhesus macaque model. The GDNF-eluting conduit (PCL/GDNF) was compared to a median nerve autograft and a PCL conduit containing empty microspheres (PCL/Empty). Functional testing demonstrated similar functional recovery between the PCL/GDNF-treated group (75.64 ± 10.28%) and the autograft-treated group (77.49 ± 19.28%); both groups were statistically improved compared to PCL/Empty-treated group (44.95 ± 26.94%). Nerve conduction velocity 1 year after surgery was increased in the PCL/GDNF-treated macaques (31.41 ± 15.34 meters/second) compared to autograft (25.45 ± 3.96 meters/second) and PCL/Empty (12.60 ± 3.89 meters/second) treatment. Histological analyses included assessment of Schwann cell presence, myelination of axons, nerve fiber density, and -ratio. PCL/GDNF group exhibited a statistically greater average area occupied by individual Schwann cells at the distal nerve (11.60 ± 33.01 μm) compared to autograft (4.62 ± 3.99 μm) and PCL/Empty (4.52 ± 5.16 μm) treatment groups. This study demonstrates the efficacious bridging of a long peripheral nerve gap in a nonhuman primate model using an acellular, biodegradable nerve conduit.
周围神经的严重损伤难以修复。对于 2 至 3 厘米以上的神经间隙,标准的治疗方法是自体移植;然而,自体移植会导致神经瘤形成、供体部位感觉功能丧失和手术时间延长。为了解决合成神经导管治疗大神经间隙的需求,我们研究了一种可生物降解的聚己内酯(PCL)导管,其中嵌入了双层聚合物微球,包埋了胶质细胞源性神经营养因子(GDNF),能够在恒河猴模型的 5 厘米神经缺损中持续释放 GDNF 超过 50 天。GDNF 洗脱导管(PCL/GDNF)与正中神经自体移植物和含有空微球的 PCL 导管(PCL/Empty)进行了比较。功能测试表明,PCL/GDNF 治疗组(75.64±10.28%)和自体移植物治疗组(77.49±19.28%)之间的功能恢复相似;与 PCL/Empty 治疗组(44.95±26.94%)相比,这两组均有统计学上的改善。手术后 1 年,PCL/GDNF 治疗的猕猴的神经传导速度增加(31.41±15.34 米/秒),与自体移植物(25.45±3.96 米/秒)和 PCL/Empty(12.60±3.89 米/秒)治疗相比。组织学分析包括评估施万细胞的存在、轴突的髓鞘形成、神经纤维密度和比值。PCL/GDNF 组在远端神经中单个施万细胞的平均面积(11.60±33.01 μm)明显大于自体移植物(4.62±3.99 μm)和 PCL/Empty (4.52±5.16 μm)治疗组。这项研究在非人类灵长类动物模型中证明了使用无细胞、可生物降解的神经导管有效桥接长的周围神经间隙。