Suppr超能文献

芋(Colocasia esculenta)叶的润湿性及其仿生表面特性。

Wetting characteristics of Colocasia esculenta (Taro) leaf and a bioinspired surface thereof.

机构信息

Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.

出版信息

Sci Rep. 2020 Jan 22;10(1):935. doi: 10.1038/s41598-020-57410-2.

Abstract

We investigate wetting and water repellency characteristics of Colocasia esculenta (taro) leaf and an engineered surface, bioinspired by the morphology of the surface of the leaf. Scanning electron microscopic images of the leaf surface reveal a two-tier honeycomb-like microstructures, as compared to previously-reported two-tier micropillars on a Nelumbo nucifera (lotus) leaf. We measured static, advancing, and receding angle on the taro leaf and these values are around 10% lesser than those for the lotus leaf. Using standard photolithography techniques, we manufactured bioinspired surfaces with hexagonal cavities of different sizes. The ratio of inner to the outer radius of the circumscribed circle to the hexagon (b/a) was varied. We found that the measured static contact angle on the bioinspired surface varies with b/a and this variation is consistent with a free-energy based model for a droplet in Cassie-Baxter state. The static contact angle on the bioinspired surface is closer to that for the leaf for b/a ≈ 1. However, the contact angle hysteresis is much larger on these surfaces as compared to that on the leaf and the droplet sticks to the surfaces. We explain this behavior using a first-order model based on force balance on the contact line. Finally, the droplet impact dynamics was recorded on the leaf and different bioinspired surfaces. The droplets bounce on the leaf beyond a critical Weber number (We ~  1.1), exhibiting remarkable water-repellency characteristics. However, the droplet sticks to the bioinspired surfaces in all cases of We. At larger We, we recorded droplet breakup on the surface with larger b/a and droplet assumes full or partial Wenzel state. The breakup is found to be a function of We and b/a and the measured angles in full Wenzel state are closer to the predictions of the free-energy based model. The sticky bioinspired surfaces are potentially useful in applications such as water-harvesting.

摘要

我们研究了 Colocasia esculenta(芋头)叶和受其表面形态启发而设计的工程表面的润湿性和疏水性特征。与之前报道的荷叶上的两级微柱相比,叶片表面的扫描电子显微镜图像显示出两级蜂窝状微观结构。我们测量了芋头叶的静态、前进和后退角,这些角度比荷叶的相应角度小约 10%。使用标准光刻技术,我们制造了具有不同尺寸六边形腔的仿生表面。外接圆与六边形内接圆的半径比(b/a)发生了变化。我们发现,仿生表面上测量的静态接触角随 b/a 而变化,这种变化与 Cassie-Baxter 状态下液滴的基于自由能的模型一致。对于 b/a ≈ 1,仿生表面上的静态接触角更接近叶片的接触角。然而,与叶片相比,这些表面上的接触角滞后要大得多,液滴会粘在表面上。我们使用基于接触线力平衡的一阶模型来解释这种行为。最后,我们在叶片和不同的仿生表面上记录了液滴冲击动力学。当 We 超过临界 Weber 数(We ≈ 1.1)时,液滴会在叶片上反弹,表现出显著的疏水性特征。然而,在所有 We 的情况下,液滴都会粘在仿生表面上。在更大的 We 下,我们记录了具有更大 b/a 的表面上的液滴破裂,并且液滴呈现完全或部分 Wenzel 状态。破裂被发现是 We 和 b/a 的函数,并且在完全 Wenzel 状态下测量的角度更接近基于自由能的模型的预测。粘性仿生表面在集水等应用中可能很有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验