Neisius Ulf, El-Rewaidy Hossam, Kucukseymen Selcuk, Tsao Connie W, Mancio Jennifer, Nakamori Shiro, Manning Warren J, Nezafat Reza
Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.
Cardiology Section, Department of Medicine, VA Boston Healthcare System, Harvard Medical School, Boston, Massachusetts, USA.
J Magn Reson Imaging. 2020 Sep;52(3):906-919. doi: 10.1002/jmri.27048. Epub 2020 Jan 23.
In patients with suspected or known hypertrophic cardiomyopathy (HCM), late gadolinium enhancement (LGE) provides diagnostic and prognostic value. However, contraindications and long-term retention of gadolinium have raised concern about repeated gadolinium administration in this population. Alternatively, native T -mapping enables identification of focal fibrosis, the substrate of LGE. However HCM-specific heterogeneous fibrosis distribution leads to subtle T -maps changes that are difficult to identify.
To apply radiomic texture analysis on native T -maps to identify patients with a low likelihood of LGE(+), thereby reducing the number of patients exposed to gadolinium administration.
Retrospective interpretation of prospectively acquired data.
In all, 188 (54.7 ± 14.4 years, 71% men) with suspected or known HCM.
FIELD STRENGTH/SEQUENCE: A 1.5T scanner; slice-interleaved native T -mapping (STONE) sequence and 3D LGE after administration of 0.1 mmol/kg of gadobenate dimeglumine.
Left ventricular LGE images were location-matched with native T -maps using anatomical landmarks. Using a split-sample validation approach, patients were randomly divided 3:1 (training/internal validation vs. test cohorts). To balance the data during training, 50% of LGE(-) slices were discarded.
Four sets of texture descriptors were applied to the training dataset for capture of spatially dependent and independent pixel statistics. Five texture features were sequentially selected with the best discriminatory capacity between LGE(+) and LGE(-) T -maps and tested using a decision tree ensemble (DTE) classifier.
The selected texture features discriminated between LGE(+) and LGE(-) T -maps with a c-statistic of 0.75 (95% confidence interval [CI]: 0.70-0.80) using 10-fold cross-validation during internal validation in the training dataset and 0.74 (95% CI: 0.65-0.83) in the independent test dataset. The DTE classifier provided adequate labeling of all (100%) LGE(+) patients and 37% of LGE(-) patients during testing.
Radiomic analysis of native T -images can identify ~1/3 of LGE(-) patients for whom gadolinium administration can be safely avoided.
2 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2020. J. Magn. Reson. Imaging 2020;52:906-919.
在疑似或已知肥厚型心肌病(HCM)患者中,延迟钆增强(LGE)具有诊断和预后价值。然而,钆的禁忌症和长期留存引发了对该人群重复使用钆的担忧。另外,基于T1加权成像的心肌T1值测量(native T -mapping)能够识别局灶性纤维化,即LGE的病理基础。然而,HCM特有的异质性纤维化分布导致T1图变化细微,难以识别。
对基于T1加权成像的心肌T1值测量图(native T -maps)应用影像组学纹理分析,以识别LGE(+)可能性低的患者,从而减少接受钆剂注射的患者数量。
对前瞻性获取的数据进行回顾性解读。
共188例(年龄54.7±14.4岁,71%为男性)疑似或已知HCM患者。
场强/序列:1.5T扫描仪;采用分层交错的基于T1加权成像的心肌T1值测量(STONE)序列以及静脉注射0.1 mmol/kg钆布醇后的三维LGE序列。
使用解剖标志将左心室LGE图像与基于T1加权成像的心肌T1值测量图进行位置匹配。采用拆分样本验证方法,将患者随机分为3:1(训练/内部验证组与测试组)。为了在训练期间平衡数据,丢弃50%的LGE(-)切片。
将四组纹理描述符应用于训练数据集,以获取空间相关和独立的像素统计信息。依次选择五个具有最佳辨别能力的纹理特征,用于区分LGE(+)和LGE(-)的基于T1加权成像的心肌T1值测量图,并使用决策树集成(DTE)分类器进行测试。
在训练数据集中进行内部验证时,使用10倍交叉验证,所选纹理特征区分LGE(+)和LGE(-)的基于T1加权成像的心肌T1值测量图的c统计量为0.75(95%置信区间[CI]:0.70 - 0.80),在独立测试数据集中为0.74(95% CI:0.65 - 0.83)。在测试期间,DTE分类器对所有(100%)LGE(+)患者和37%的LGE(-)患者进行了充分分类。
基于T1加权成像的心肌T1值测量图的影像组学分析可以识别约三分之一的LGE(-)患者,对于这些患者可以安全避免使用钆剂。
2 技术效能阶段:2 《磁共振成像杂志》2020年。《磁共振成像杂志》2020;52:906 - 919。