Nakamori Shiro, Amyar Amine, Fahmy Ahmed S, Ngo Long H, Ishida Masaki, Nakamura Satoshi, Omori Taku, Moriwaki Keishi, Fujimoto Naoki, Imanaka-Yoshida Kyoko, Sakuma Hajime, Dohi Kaoru, Manning Warren J, Nezafat Reza
Departments of Medicine (S. Nakamori, A.A., A.S.F., L.H.N., W.J.M., R.N.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA.
Departments of Cardiology and Nephrology (S. Nakamori, T.O., K.M., N.F., K.D.), Mie University Graduate School of Medicine, Tsu, Japan.
Circulation. 2024 Jul 2;150(1):7-18. doi: 10.1161/CIRCULATIONAHA.123.067107. Epub 2024 May 29.
Current cardiovascular magnetic resonance sequences cannot discriminate between different myocardial extracellular space (ECSs), including collagen, noncollagen, and inflammation. We sought to investigate whether cardiovascular magnetic resonance radiomics analysis can distinguish between noncollagen and inflammation from collagen in dilated cardiomyopathy.
We identified data from 132 patients with dilated cardiomyopathy scheduled for an invasive septal biopsy who underwent cardiovascular magnetic resonance at 3 T. Cardiovascular magnetic resonance imaging protocol included native and postcontrast T mapping and late gadolinium enhancement (LGE). Radiomic features were computed from the midseptal myocardium, near the biopsy region, on native T, extracellular volume (ECV) map, and LGE images. Principal component analysis was used to reduce the number of radiomic features to 5 principal radiomics. Moreover, a correlation analysis was conducted to identify radiomic features exhibiting a strong correlation (r>0.9) with the 5 principal radiomics. Biopsy samples were used to quantify ECS, myocardial fibrosis, and inflammation.
Four histopathological phenotypes were identified: low collagen (n=20), noncollagenous ECS expansion (n=49), mild to moderate collagenous ECS expansion (n=42), and severe collagenous ECS expansion (n=21). Noncollagenous expansion was associated with the highest risk of myocardial inflammation (65%). Although native T and ECV provided high diagnostic performance in differentiating severe fibrosis (C statistic, 0.90 and 0.90, respectively), their performance in differentiating between noncollagen and mild to moderate collagenous expansion decreased (C statistic: 0.59 and 0.55, respectively). Integration of ECV principal radiomics provided better discrimination and reclassification between noncollagen and mild to moderate collagen (C statistic, 0.79; net reclassification index, 0.83 [95% CI, 0.45-1.22]; <0.001). There was a similar trend in the addition of native T principal radiomics (C statistic, 0.75; net reclassification index, 0.93 [95% CI, 0.56-1.29]; <0.001) and LGE principal radiomics (C statistic, 0.74; net reclassification index, 0.59 [95% CI, 0.19-0.98]; =0.004). Five radiomic features per sequence were identified with correlation analysis. They showed a similar improvement in performance for differentiating between noncollagen and mild to moderate collagen (native T, ECV, LGE C statistic, 0.75, 0.77, and 0.71, respectively). These improvements remained significant when confined to a single radiomic feature (native T, ECV, LGE C statistic, 0.71, 0.70, and 0.64, respectively).
Radiomic features extracted from native T, ECV, and LGE provide incremental information that improves our capability to discriminate noncollagenous expansion from mild to moderate collagen and could be useful for detecting subtle chronic inflammation in patients with dilated cardiomyopathy.
目前的心血管磁共振序列无法区分不同的心肌细胞外间隙(ECS),包括胶原蛋白、非胶原蛋白和炎症。我们试图研究心血管磁共振影像组学分析能否在扩张型心肌病中区分非胶原蛋白和炎症与胶原蛋白。
我们确定了132例计划进行侵入性室间隔活检的扩张型心肌病患者的数据,这些患者在3T下接受了心血管磁共振检查。心血管磁共振成像方案包括平扫及增强后T值映射和延迟钆增强(LGE)。影像组学特征是从靠近活检区域的室间隔中部心肌在平扫T、细胞外容积(ECV)图和LGE图像上计算得出的。主成分分析用于将影像组学特征数量减少到5个主要影像组学特征。此外,进行了相关性分析,以识别与这5个主要影像组学特征表现出强相关性(r>0.9)的影像组学特征。活检样本用于量化ECS、心肌纤维化和炎症。
确定了四种组织病理学表型:低胶原蛋白(n = 20)、非胶原性ECS扩张(n = 49)、轻度至中度胶原性ECS扩张(n = 42)和重度胶原性ECS扩张(n = 21)。非胶原性扩张与心肌炎症的最高风险相关(65%)。虽然平扫T和ECV在区分严重纤维化方面具有较高的诊断性能(C统计量分别为0.90和0.90),但它们在区分非胶原蛋白和轻度至中度胶原性扩张方面的性能下降(C统计量分别为0.59和0.55)。ECV主要影像组学特征的整合在区分非胶原蛋白和轻度至中度胶原蛋白方面提供了更好的辨别和重新分类能力(C统计量为0.79;净重新分类指数为0.83 [95% CI,0.45 - 1.22];P<0.001)。添加平扫T主要影像组学特征(C统计量为0.75;净重新分类指数为0.93 [95% CI,0.56 - 1.29];P<0.001)和LGE主要影像组学特征(C统计量为0.74;净重新分类指数为0.59 [95% CI,0.19 - 0.98];P = 0.004)也有类似趋势。通过相关性分析确定了每个序列的5个影像组学特征。它们在区分非胶原蛋白和轻度至中度胶原蛋白方面的性能也有类似改善(平扫T、ECV、LGE的C统计量分别为0.75、0.77和0.71)。当仅限于单个影像组学特征时,这些改善仍然显著(平扫T、ECV、LGE的C统计量分别为0.71、0.70和0.64)。
从平扫T、ECV和LGE中提取的影像组学特征提供了额外的信息,提高了我们区分非胶原性扩张与轻度至中度胶原蛋白的能力,并且可能有助于检测扩张型心肌病患者的细微慢性炎症。