IEEE Trans Med Imaging. 2021 May;40(5):1352-1362. doi: 10.1109/TMI.2021.3054950. Epub 2021 Apr 30.
Ultrasound shear wave elastography (SWE) is a technique used to measure mechanical properties to evaluate healthy and pathological soft tissues. SWE typically employs an acoustic radiation force (ARF) to generate laterally propagating shear waves that are tracked in the spatiotemporal domains, and algorithms are used to estimate the wave velocity. The tissue viscoelasticity is often examined through analyzing the shear wave phase velocity dispersion curves, which is the variation of phase velocity with frequency or wavelength. A number of available methods to estimate dispersion exist, which can differ in resolution and variance. Moreover, most of these techniques reconstruct dispersion curves for a limited frequency band. In this work, we propose a novel method used for dispersion curve calculation. Our unique approach uses a generalized Stockwell transformation combined with a slant frequency-wavenumber analysis (GST-SFK). We tested the GST-SFK method on numerical phantom data generated using a finite-difference-based method in tissue-mimicking viscoelastic media. In addition, we evaluated the method on numerical shear wave motion data with different amounts of white Gaussian noise added. Additionally, we performed tests on data from custom-made tissue-mimicking viscoelastic phantom experiments, ex vivo porcine liver measurements, and in vivo liver tissue experiments. We compared results from our method with two other techniques used for estimating shear wave phase velocity: the two-dimensional Fourier transform (2D-FT) and the eigenvector (EV) method. Tests carried out revealed that the GST-SFK method provides dispersion curve estimates with lower errors over a wider frequency band in comparison to the 2D-FT and EV methods. In addition, the GST-SFK provides expanded bandwidth by a factor of two or more to be used for phase velocity estimation, which is meaningful for a tissue dispersion analysis in vivo.
超声剪切波弹性成像(SWE)是一种用于测量机械特性以评估健康和病理软组织的技术。SWE 通常采用声辐射力(ARF)产生横向传播的剪切波,这些剪切波在时空域中被跟踪,然后使用算法来估计波速。组织粘弹性通常通过分析剪切波相速度频散曲线来进行检查,即相速度随频率或波长的变化。有许多可用的方法可以估计频散,这些方法在分辨率和方差方面可能有所不同。此外,大多数这些技术都可以在有限的频带内重建频散曲线。在这项工作中,我们提出了一种用于计算频散曲线的新方法。我们独特的方法使用广义斯托克斯变换结合倾斜频率波数分析(GST-SFK)。我们在基于有限差分的方法生成的组织模拟粘弹性介质的数值幻影数据上测试了 GST-SFK 方法。此外,我们还在添加了不同数量的白高斯噪声的数值剪切波运动数据上评估了该方法。此外,我们还对来自定制组织模拟粘弹性幻影实验、离体猪肝脏测量和体内肝脏组织实验的数据进行了测试。我们将我们的方法的结果与用于估计剪切波相速度的另外两种技术(二维傅里叶变换(2D-FT)和特征向量(EV)方法)进行了比较。进行的测试表明,与 2D-FT 和 EV 方法相比,GST-SFK 方法在更宽的频率范围内提供了具有更低误差的频散曲线估计值。此外,GST-SFK 提供了两倍或更多的扩展带宽,可用于相速度估计,这对于体内组织色散分析具有重要意义。