Suppr超能文献

pyKNEEr:用于股骨膝软骨的开放和可重复研究的图像分析工作流程。

pyKNEEr: An image analysis workflow for open and reproducible research on femoral knee cartilage.

机构信息

Department of Radiology, Stanford University, Stanford, CA, United States of America.

Musculoskeletal Research Laboratory, VA Palo Alto Health Care System, Palo Alto, CA, United States of America.

出版信息

PLoS One. 2020 Jan 24;15(1):e0226501. doi: 10.1371/journal.pone.0226501. eCollection 2020.

Abstract

Transparent research in musculoskeletal imaging is fundamental to reliably investigate diseases such as knee osteoarthritis (OA), a chronic disease impairing femoral knee cartilage. To study cartilage degeneration, researchers have developed algorithms to segment femoral knee cartilage from magnetic resonance (MR) images and to measure cartilage morphology and relaxometry. The majority of these algorithms are not publicly available or require advanced programming skills to be compiled and run. However, to accelerate discoveries and findings, it is crucial to have open and reproducible workflows. We present pyKNEEr, a framework for open and reproducible research on femoral knee cartilage from MR images. pyKNEEr is written in python, uses Jupyter notebook as a user interface, and is available on GitHub with a GNU GPLv3 license. It is composed of three modules: 1) image preprocessing to standardize spatial and intensity characteristics; 2) femoral knee cartilage segmentation for intersubject, multimodal, and longitudinal acquisitions; and 3) analysis of cartilage morphology and relaxometry. Each module contains one or more Jupyter notebooks with narrative, code, visualizations, and dependencies to reproduce computational environments. pyKNEEr facilitates transparent image-based research of femoral knee cartilage because of its ease of installation and use, and its versatility for publication and sharing among researchers. Finally, due to its modular structure, pyKNEEr favors code extension and algorithm comparison. We tested our reproducible workflows with experiments that also constitute an example of transparent research with pyKNEEr, and we compared pyKNEEr performances to existing algorithms in literature review visualizations. We provide links to executed notebooks and executable environments for immediate reproducibility of our findings.

摘要

在肌肉骨骼成像中进行透明研究对于可靠地研究疾病(如膝骨关节炎(OA))至关重要,OA 是一种慢性疾病,会损害股骨膝关节软骨。为了研究软骨退化,研究人员已经开发了从磁共振(MR)图像中分割股骨膝关节软骨的算法,并测量软骨形态和弛豫率。这些算法大多数没有公开,或者需要高级编程技能来编译和运行。然而,为了加速发现和研究成果,拥有开放和可重复的工作流程至关重要。我们提出了 pyKNEEr,这是一个用于从 MR 图像中进行股骨膝关节软骨的开放和可重复研究的框架。pyKNEEr 是用 Python 编写的,使用 Jupyter notebook 作为用户界面,并且可以在 GitHub 上使用 GNU GPLv3 许可证获得。它由三个模块组成:1)图像预处理,以标准化空间和强度特征;2)用于个体间、多模态和纵向采集的股骨膝关节软骨分割;3)软骨形态和弛豫率分析。每个模块都包含一个或多个 Jupyter 笔记本,其中包含说明、代码、可视化和重现计算环境的依赖项。pyKNEEr 由于其易于安装和使用,以及在研究人员之间进行发布和共享的通用性,促进了股骨膝关节软骨的透明基于图像的研究。最后,由于其模块化结构,pyKNEEr 有利于代码扩展和算法比较。我们使用实验测试了我们的可重复工作流程,这些实验也构成了使用 pyKNEEr 进行透明研究的示例,并且我们在文献综述可视化中比较了 pyKNEEr 性能与现有算法。我们提供了执行笔记本和可执行环境的链接,以便立即重现我们的研究结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d892/6980400/9c45a156f956/pone.0226501.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验