Suppr超能文献

ClinVar 中的错义变异体的计算机分析:将变异预测转化为变异解释和分类。

In-silico Analysis of Missense Variants in ClinVar: Translating Variant Predictions into Variant Interpretation and Classification.

机构信息

R&D Department, BioTechnology Services srl, 71122 Foggia, Italy.

Sezione di Igiene, Dipartimento di Scienze Biomediche e Oncologia Umana, Università degli Studi di Bari Aldo Moro, 70124 Bari, Italy.

出版信息

Int J Mol Sci. 2020 Jan 22;21(3):721. doi: 10.3390/ijms21030721.

Abstract

: With the advent of next-generation sequencing in genetic testing, predicting the pathogenicity of missense variants represents a major challenge potentially leading to misdiagnoses in the clinical setting. In neurofibromatosis type 1 (NF1), where clinical criteria for diagnosis may not be fully present until late infancy, correct assessment of variant pathogenicity is fundamental for appropriate patients' management. : Here, we analyzed three different computational methods, VEST3, REVEL and ClinPred, and after extracting predictions scores for 1585 missense variants listed in ClinVar, evaluated their performances and the score distribution throughout the neurofibromin protein. : For all the three methods, no significant differences were present between the scores of "likely benign", "benign", and "likely pathogenic", "pathogenic" variants that were consequently collapsed into a single category. The cutoff values for pathogenicity were significantly different for the three methods and among benign and pathogenic variants for all methods. After training five different models with a subset of benign and pathogenic variants, we could reclassify variants in three sharply separated categories. : The recently developed metapredictors, which integrate information from multiple components, after gene-specific fine-tuning, could represent useful tools for variant interpretation, particularly in genetic diseases where a clinical diagnosis can be difficult.

摘要

随着下一代测序技术在基因检测中的应用,预测错义变异的致病性是一个重大挑战,可能导致临床诊断中的误诊。在神经纤维瘤病 1 型(NF1)中,临床诊断标准可能直到婴儿后期才完全出现,因此正确评估变异的致病性对于患者的适当管理至关重要。在这里,我们分析了三种不同的计算方法,即 VEST3、REVEL 和 ClinPred,在提取 ClinVar 中列出的 1585 个错义变异的预测评分后,评估了它们在整个神经纤维瘤蛋白中的性能和评分分布。对于所有三种方法,“可能良性”、“良性”和“可能致病性”、“致病性”变异的评分之间没有显著差异,因此将它们合并为一个类别。三种方法的致病性临界值差异显著,所有方法的良性和致病性变异的临界值也存在差异。在用良性和致病性变异的子集训练了五个不同的模型后,我们可以将变异重新分类为三个明显分离的类别。最近开发的元预测器,在经过基因特异性微调后,可以整合来自多个组件的信息,这可能是变异解释的有用工具,特别是在临床诊断可能困难的遗传疾病中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5049/7037781/f197343f1964/ijms-21-00721-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验