Suppr超能文献

利用结构分析提高 X 连锁基因中错义变异的临床解读。

Improving the clinical interpretation of missense variants in X linked genes using structural analysis.

机构信息

Division of Evolution and Genomic Sciences, The University of Manchester Faculty of Biology, Medicine and Health, Manchester, UK.

Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester Academic Health Sciences Centre, Manchester, UK.

出版信息

J Med Genet. 2022 Apr;59(4):385-392. doi: 10.1136/jmedgenet-2020-107404. Epub 2021 Mar 25.

Abstract

BACKGROUND

Improving the clinical interpretation of missense variants can increase the diagnostic yield of genomic testing and lead to personalised management strategies. Currently, due to the imprecision of bioinformatic tools that aim to predict variant pathogenicity, their role in clinical guidelines remains limited. There is a clear need for more accurate prediction algorithms and this study aims to improve performance by harnessing structural biology insights. The focus of this work is missense variants in a subset of genes associated with X linked disorders.

METHODS

We have developed a tein-ecific variant interpret (ProSper) that combines genetic and protein structural data. This algorithm predicts missense variant pathogenicity by applying machine learning approaches to the sequence and structural characteristics of variants.

RESULTS

ProSper outperformed seven previously described tools, including meta-predictors, in correctly evaluating whether or not variants are pathogenic; this was the case for 11 of the 21 genes associated with X linked disorders that met the inclusion criteria for this study. We also determined gene-specific pathogenicity thresholds that improved the performance of VEST4, REVEL and ClinPred, the three best-performing tools out of the seven that were evaluated; this was the case in 11, 11 and 12 different genes, respectively.

CONCLUSION

ProSper can form the basis of a molecule-specific prediction tool that can be implemented into diagnostic strategies. It can allow the accurate prioritisation of missense variants associated with X linked disorders, aiding precise and timely diagnosis. In addition, we demonstrate that gene-specific pathogenicity thresholds for a range of missense prioritisation tools can lead to an increase in prediction accuracy.

摘要

背景

提高错义变异的临床解读能力可以提高基因组检测的诊断率,并导致个性化的管理策略。目前,由于旨在预测变异致病性的生物信息学工具不够精确,它们在临床指南中的作用仍然有限。显然需要更准确的预测算法,本研究旨在利用结构生物学的见解来提高性能。这项工作的重点是与 X 连锁疾病相关的一组基因中的错义变异。

方法

我们开发了一种专门针对蛋白质的变异解释(ProSper),它结合了遗传和蛋白质结构数据。该算法通过将机器学习方法应用于变体的序列和结构特征,预测错义变体的致病性。

结果

ProSper 在正确评估变体是否致病性方面优于包括元预测器在内的七个先前描述的工具;在满足本研究纳入标准的 21 个与 X 连锁疾病相关的基因中,有 11 个基因符合这一情况。我们还确定了基因特异性致病性阈值,这些阈值提高了七个评估工具中性能最好的三个工具(VEST4、REVEL 和 ClinPred)的性能;在分别为 11、11 和 12 个不同的基因中符合这一情况。

结论

ProSper 可以作为一种基于分子的预测工具的基础,该工具可以被纳入诊断策略中。它可以准确地对与 X 连锁疾病相关的错义变异进行优先级排序,有助于进行精确和及时的诊断。此外,我们证明了针对一系列错义优先排序工具的基因特异性致病性阈值可以提高预测准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6025/8961765/7c31ce5a83e5/jmedgenet-2020-107404f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验