Suppr超能文献

一种预测抗逆转录病毒治疗的治疗史和有效性或失败的计算方法。

A Computational Approach for the Prediction of Treatment History and the Effectiveness or Failure of Antiretroviral Therapy.

机构信息

Department of Bioinformatics, Institute of Biomedical Chemistry, 119121 Moscow, Russia.

Central Research Institute of Epidemiology, 111123 Moscow, Russia.

出版信息

Int J Mol Sci. 2020 Jan 23;21(3):748. doi: 10.3390/ijms21030748.

Abstract

Human Immunodeficiency Virus Type 1 (HIV-1) infection is associated with high mortality if no therapy is provided. Currently, the treatment of an HIV-1 positive patient requires that several drugs should be taken simultaneously. The resistance of the virus to an antiretroviral drug may lead to treatment failure. Our approach focuses on predicting the exposure of a particular viral variant to an antiretroviral drug or drug combination. It also aims at the prediction of drug treatment success or failure. We utilized nucleotide sequences of HIV-1 encoding protease and reverse transcriptase to perform such types of prediction. The PASS (Prediction of Activity Spectra for Substances) algorithm based on the naive Bayesian classifier was used to make a prediction. We calculated the probability of whether a sequence belonged (P) or did not belong (P) to the class associated with exposure of the viral sequence to the set of drugs that can be associated with resistance to the set of drugs. The accuracy calculated as the average Area Under the ROC (Receiver Operating Characteristic) Curve (AUC/ROC) for classifying exposure of the sequence to the HIV-1 protease inhibitors was 0.81 (±0.07), and for HIV-1 reverse transcriptase, it was 0.83 (±0.07). To predict cases of treatment effectiveness or failure, we used P and P values, obtained in PASS, along with the binary vector constructed based on short nucleotide descriptors and the applied random forest classifier. Average AUC/ROC prediction accuracy for the prediction of treatment effectiveness or failure for the combinations of HIV-1 protease inhibitors was 0.82 (±0.06) and of HIV-1 reverse transcriptase was 0.76 (±0.09).

摘要

人类免疫缺陷病毒 1 型(HIV-1)感染如果不进行治疗,死亡率很高。目前,HIV-1 阳性患者的治疗需要同时服用几种药物。病毒对抗逆转录病毒药物的耐药性可能导致治疗失败。我们的方法侧重于预测特定病毒变异体对一种或多种抗逆转录病毒药物的暴露情况,并预测药物治疗的成功或失败。我们利用 HIV-1 编码蛋白酶和逆转录酶的核苷酸序列进行此类预测。基于朴素贝叶斯分类器的 PASS(物质活性谱预测)算法用于进行预测。我们计算序列属于(P)或不属于(P)与病毒序列暴露于与耐药性相关的药物集相关联的类别的概率。用于分类序列对 HIV-1 蛋白酶抑制剂的暴露的准确性计算为平均 ROC 曲线下面积(AUC/ROC)(±0.07),对于 HIV-1 逆转录酶,它为 0.83(±0.07)。为了预测治疗效果或失败的情况,我们使用了 PASS 中获得的 P 和 P 值,以及基于短核苷酸描述符构建的二进制向量和应用的随机森林分类器。用于预测 HIV-1 蛋白酶抑制剂组合的治疗效果或失败的预测的平均 AUC/ROC 预测准确性为 0.82(±0.06),HIV-1 逆转录酶为 0.76(±0.09)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f0e/7037494/0a6e4f4e4dd8/ijms-21-00748-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验