Suppr超能文献

利用基因、表型和分子信息以及人工神经网络预测 HIV-1 蛋白酶耐药性。

Prediction of HIV-1 protease resistance using genotypic, phenotypic, and molecular information with artificial neural networks.

机构信息

Department of Biostatistics and Medical Informatics, School of Medicine, Bahcesehir University, Istanbul, Turkey.

Department of Medicinal Biochemistry, School of Medicine, Bahcesehir University, Istanbul, Turkey.

出版信息

PeerJ. 2023 Mar 21;11:e14987. doi: 10.7717/peerj.14987. eCollection 2023.

Abstract

Drug resistance is a primary barrier to effective treatments of HIV/AIDS. Calculating quantitative relations between genotype and phenotype observations for each inhibitor with cell-based assays requires time and money-consuming experiments. Machine learning models are good options for tackling these problems by generalizing the available data with suitable linear or nonlinear mappings. The main aim of this study is to construct drug isolate fold (DIF) change-based artificial neural network (ANN) models for estimating the resistance potential of molecules inhibiting the HIV-1 protease (PR) enzyme. Throughout the study, seven of eight protease inhibitors (PIs) have been included in the training set and the remaining ones in the test set. We have obtained 11,803 genotype-phenotype data points for eight PIs from Stanford HIV drug resistance database. Using the leave-one-out (LVO) procedure, eight ANN models have been produced to measure the learning capacity of models from the descriptors of the inhibitors. Mean R value of eight ANN models for unseen inhibitors is 0.716, and the 95% confidence interval (CI) is [0.592-0.840]. Predicting the fold change resistance for hundreds of isolates allowed a robust comparison of drug pairs. These eight models have predicted the drug resistance tendencies of each inhibitor pair with the mean 2D correlation coefficient of 0.933 and 95% CI [0.930-0.938]. A classification problem has been created to predict the ordered relationship of the PIs, and the mean accuracy, sensitivity, specificity, and Matthews correlation coefficient (MCC) values are calculated as 0.954, 0.791, 0.791, and 0.688, respectively. Furthermore, we have created an external test dataset consisting of 51 unique known HIV-1 PR inhibitors and 87 genotype-phenotype relations. Our developed ANN model has accuracy and area under the curve (AUC) values of 0.749 and 0.818 to predict the ordered relationships of molecules on the same strain for the external dataset. The currently derived ANN models can accurately predict the drug resistance tendencies of PI pairs. This observation could help test new inhibitors with various isolates.

摘要

耐药性是有效治疗 HIV/AIDS 的主要障碍。使用基于细胞的测定法计算每个抑制剂的基因型和表型观察之间的定量关系需要耗费时间和金钱进行实验。通过使用合适的线性或非线性映射对可用数据进行概括,机器学习模型是解决这些问题的好选择。本研究的主要目的是构建基于药物分离折叠 (DIF) 变化的人工神经网络 (ANN) 模型,以估计抑制 HIV-1 蛋白酶 (PR) 酶的分子的耐药潜力。在整个研究过程中,训练集中包含了八种蛋白酶抑制剂 (PI) 中的七种,而其余的则在测试集中。我们从斯坦福 HIV 耐药性数据库中获得了针对八种 PI 的 11803 个基因型-表型数据点。使用留一法 (LVO) 程序,我们生成了八个 ANN 模型,以衡量模型从抑制剂描述符中学习的能力。对于未见抑制剂,八个 ANN 模型的平均 R 值为 0.716,95%置信区间 (CI) 为 [0.592-0.840]。对数百个分离物进行耐药性预测,允许对药物对进行稳健比较。这八个模型使用平均二维相关系数 0.933 和 95%置信区间 [0.930-0.938] 预测了每个抑制剂对的药物耐药倾向。创建了一个分类问题来预测 PI 的有序关系,平均准确率、敏感度、特异性和 Matthews 相关系数 (MCC) 值分别计算为 0.954、0.791、0.791 和 0.688。此外,我们创建了一个包含 51 种独特已知 HIV-1 PR 抑制剂和 87 种基因型-表型关系的外部测试数据集。我们开发的 ANN 模型在外部数据集中对同一株的分子进行排序关系预测的准确率和曲线下面积 (AUC) 值分别为 0.749 和 0.818。目前得出的 ANN 模型可以准确预测 PI 对的药物耐药倾向。这一观察结果可以帮助对各种分离物进行新抑制剂的测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9269/10038082/9079c4f866c1/peerj-11-14987-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验