Suppr超能文献

成像线粒体功能:从荧光染料到基因编码传感器。

Imaging Mitochondrial Functions: from Fluorescent Dyes to Genetically-Encoded Sensors.

机构信息

Univ Rennes, CNRS, IGDR [Institut de génétique et développement de Rennes] UMR 6290, F-35000 Rennes, France.

出版信息

Genes (Basel). 2020 Jan 23;11(2):125. doi: 10.3390/genes11020125.

Abstract

Mitochondria are multifunctional organelles that are crucial to cell homeostasis. They constitute the major site of energy production for the cell, they are key players in signalling pathways using secondary messengers such as calcium, and they are involved in cell death and redox balance paradigms. Mitochondria quickly adapt their dynamics and biogenesis rates to meet the varying energy demands of the cells, both in normal and in pathological conditions. Therefore, understanding simultaneous changes in mitochondrial functions is crucial in developing mitochondria-based therapy options for complex pathological conditions such as cancer, neurological disorders, and metabolic syndromes. To this end, fluorescence microscopy coupled to live imaging represents a promising strategy to track these changes in real time. In this review, we will first describe the commonly available tools to follow three key mitochondrial functions using fluorescence microscopy: Calcium signalling, mitochondrial dynamics, and mitophagy. Then, we will focus on how the development of genetically-encoded fluorescent sensors became a milestone for the understanding of these mitochondrial functions. In particular, we will show how these tools allowed researchers to address several biochemical activities in living cells, and with high spatiotemporal resolution. With the ultimate goal of tracking multiple mitochondrial functions simultaneously, we will conclude by presenting future perspectives for the development of novel genetically-encoded fluorescent biosensors.

摘要

线粒体是多功能细胞器,对细胞内稳态至关重要。它们构成了细胞能量产生的主要场所,是利用钙等次级信使的信号通路中的关键参与者,并且参与细胞死亡和氧化还原平衡范式。线粒体可以快速调整其动力学和生物发生速率,以满足细胞在正常和病理条件下不断变化的能量需求。因此,了解线粒体功能的同时变化对于开发基于线粒体的治疗方案对于癌症、神经紊乱和代谢综合征等复杂病理状况至关重要。为此,荧光显微镜结合实时成像代表了一种有前途的策略,可以实时跟踪这些变化。在这篇综述中,我们将首先描述常用的工具,以使用荧光显微镜跟踪三种关键的线粒体功能:钙信号、线粒体动力学和线粒体自噬。然后,我们将重点介绍遗传编码荧光传感器的发展如何成为理解这些线粒体功能的一个里程碑。特别是,我们将展示这些工具如何使研究人员能够以高时空分辨率解决活细胞中的多种生化活性。为了实现同时跟踪多种线粒体功能的最终目标,我们将通过介绍新型遗传编码荧光生物传感器的未来发展前景来结束本文。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb5/7073610/04a12686e791/genes-11-00125-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验