Department of Physiological Sciences, University of Barcelona School of Medicine - Health Science Campus of Bellvitge, L´Hospitalet de Llobregat, 08907, Barcelona, Spain.
Institute of Neurosciences, University of Barcelona, Castelldefels, 08035, Barcelona, Spain.
Cell Death Dis. 2020 Jan 24;11(1):62. doi: 10.1038/s41419-020-2255-0.
Loss-of-function mutations in the retinal degeneration 3 (RD3) gene cause inherited retinopathy with impaired rod and cone function and fast retinal degeneration in patients and in the natural strain of rd3 mice. The underlying physiopathology mechanisms are not well understood. We previously proposed that guanylate cyclase-activating proteins (GCAPs) might be key Ca-sensors mediating the physiopathology of this disorder, based on the demonstrated toxicity of GCAP2 when blocked in its Ca-free form at photoreceptor inner segments. We here show that the retinal degeneration in rd3 mice is substantially delayed by GCAPs ablation. While the number of retinal photoreceptor cells is halved in 6 weeks in rd3 mice, it takes 8 months to halve in rd3/rd3 GCAPs mice. Although this substantial morphological rescue does not correlate with recovery of visual function due to very diminished guanylate cyclase activity in rd3 mice, it is very informative of the mechanisms underlying photoreceptor cell death. By showing that GCAP2 is mostly in its Ca-free-phosphorylated state in rd3 mice, we infer that the [Ca] at rod inner segments is permanently low. GCAPs are therefore retained at the inner segment in their Ca-free, guanylate cyclase activator state. We show that in this conformational state GCAPs induce endoplasmic reticulum (ER) stress, mitochondrial swelling, and cell death. ER stress and mitochondrial swelling are early hallmarks of rd3 retinas preceding photoreceptor cell death, that are substantially rescued by GCAPs ablation. By revealing the involvement of GCAPs-induced ER stress in the physiopathology of Leber's congenital amaurosis 12 (LCA12), this work will aid to guide novel therapies to preserve retinal integrity in LCA12 patients to expand the window for gene therapy intervention to restore vision.
视网膜变性 3(RD3)基因的功能丧失突变导致遗传性视网膜病变,使患者和 rd3 自然品系小鼠的 rods 和 cones 功能受损,视网膜快速退化。其潜在的病理生理学机制尚不清楚。我们之前提出,鸟苷酸环化酶激活蛋白(GCAPs)可能是介导这种疾病病理生理学的关键 Ca 传感器,这是基于在光感受器内节以无 Ca 形式阻断 GCAP2 时其表现出的毒性。我们在此表明,GCAPs 的缺失可显著延迟 rd3 小鼠的视网膜变性。虽然 rd3 小鼠的视网膜光感受器细胞数量在 6 周内减半,但在 rd3/rd3 GCAPs 小鼠中需要 8 个月才能减半。尽管由于 rd3 小鼠中鸟苷酸环化酶活性非常低,这种显著的形态学挽救与视觉功能的恢复无关,但它非常有助于了解光感受器细胞死亡的机制。通过表明 rd3 小鼠中的 GCAP2 主要处于无 Ca 磷酸化状态,我们推断 rods 内节的 [Ca] 永久降低。因此,GCAPs 以无 Ca 的、鸟苷酸环化酶激活剂状态保留在内节。我们表明,在这种构象状态下,GCAPs 会诱导内质网(ER)应激、线粒体肿胀和细胞死亡。ER 应激和线粒体肿胀是 rd3 视网膜的早期特征,在光感受器细胞死亡之前就已经出现,而 GCAPs 的缺失可显著挽救这些变化。通过揭示 GCAPs 诱导的 ER 应激在 Leber 先天性黑矇 12(LCA12)的病理生理学中的作用,这项工作将有助于指导新的治疗方法,以保持 LCA12 患者的视网膜完整性,为恢复视力的基因治疗干预扩大窗口期。