Suppr超能文献

脑内的有氧糖酵解:瓦尔堡与克雷布斯对巴斯德。

Aerobic Glycolysis in the Brain: Warburg and Crabtree Contra Pasteur.

机构信息

Centro de Estudios Científicos-CECs, 5110466, Valdivia, Chile.

出版信息

Neurochem Res. 2021 Jan;46(1):15-22. doi: 10.1007/s11064-020-02964-w. Epub 2020 Jan 24.

Abstract

Information processing is onerous. Curiously, active brain tissue does not fully oxidize glucose and instead generates a local surplus of lactate, a phenomenon termed aerobic glycolysis. Why engage in inefficient ATP production by glycolysis when energy demand is highest and oxygen is plentiful? Aerobic glycolysis is associated to classic biochemical effects known by the names of Pasteur, Warburg and Crabtree. Here we discuss these three interdependent phenomena in brain cells, in light of high-resolution data of neuronal and astrocytic metabolism in culture, tissue slices and in vivo, acquired with genetically-encoded fluorescent sensors. These sensors are synthetic proteins that can be targeted to specific cell types and subcellular compartments, which change their fluorescence in response to variations in metabolite concentration. A major site of acute aerobic glycolysis is the astrocyte. In this cell, a Crabtree effect triggered by K coincides with a Warburg effect mediated by NO, superimposed on a slower longer-lasting Warburg effect caused by glutamate and possibly by NH. The compounded outcome is that more fuel (lactate) and more oxygen are made available to neurons, on demand. Meanwhile neurons consume both glucose and lactate, maintaining a strict balance between glycolysis and respiration, commanded by the Na pump. We conclude that activity-dependent Warburg and Crabtree effects in brain tissue, and the resulting aerobic glycolysis, do not reflect inefficient energy generation but the marshalling of astrocytes for the purpose of neuronal ATP generation. It remains to be seen whether neurons contribute to aerobic glycolysis under physiological conditions.

摘要

信息处理是一项繁重的任务。奇怪的是,活跃的脑组织并没有完全氧化葡萄糖,而是产生局部的乳酸过剩,这种现象被称为有氧糖酵解。当能量需求最高且氧气充足时,为什么要通过糖酵解进行低效的 ATP 产生呢?有氧糖酵解与 Pasteur、Warburg 和 Crabtree 等经典生化效应有关。在这里,我们根据在培养细胞、组织切片和体内获得的神经元和星形胶质细胞代谢的高分辨率数据,讨论这些在脑细胞中相互依存的三种现象。这些传感器是合成蛋白,可以靶向特定的细胞类型和亚细胞区室,它们的荧光会响应代谢物浓度的变化而变化。急性有氧糖酵解的主要部位是星形胶质细胞。在这种细胞中,由 K 触发的 Crabtree 效应与由 NO 介导的 Warburg 效应同时发生,叠加在由谷氨酸和可能由 NH 引起的更慢、持续时间更长的 Warburg 效应上。综合结果是,更多的燃料(乳酸)和更多的氧气可以按需提供给神经元。同时,神经元消耗葡萄糖和乳酸,由 Na 泵指挥,在糖酵解和呼吸之间保持严格的平衡。我们得出结论,组织中的活性依赖性 Warburg 和 Crabtree 效应以及由此产生的有氧糖酵解并不反映低效的能量产生,而是为神经元 ATP 生成调集星形胶质细胞。神经元在生理条件下是否有助于有氧糖酵解仍有待观察。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验