Suppr超能文献

统计机器学习模型在前列腺外照射放疗中直肠协议依从性比较。

Comparison of statistical machine learning models for rectal protocol compliance in prostate external beam radiation therapy.

机构信息

Radiation Oncology Princess Alexandra Hospital Raymond Terrace, Brisbane, Qld, 4101, Australia.

Science and Engineering Faculty, Queensland University of Technology, Brisbane, Qld, 4000, Australia.

出版信息

Med Phys. 2020 Apr;47(4):1452-1459. doi: 10.1002/mp.14044. Epub 2020 Feb 19.

Abstract

PURPOSE

Limiting the dose to the rectum can be one of the most challenging aspects of creating a dosimetric external beam radiation therapy (EBRT) plan for prostate cancer treatment. Rectal sparing devices such as hydrogel spacers offer the prospect of increased space between the prostate and rectum, causing reduced rectal dose and potentially reduced injury. This study sought to help identify patients at higher risk of developing rectal injury based on estimated rectal dosimetry compliance prior to the EBRT simulation and planning procedure. Three statistical machine learning methods were compared for their ability to predict rectal dose outcomes with varied classification thresholds applied.

METHODS

Prostate cancer patients treated with conventionally fractionated EBRT to a reference dose of 74-78 Gy were invited to participate in the study. The dose volume histogram data from each dosimetric plan was used to quantify planned rectal volume receiving 50%, 83% 96%, and 102% of the reference dose. Patients were classified into two groups for each of these dose levels: either meeting tolerance by having a rectal volume less than a clinically acceptable threshold for the dose level (Y) or violating the tolerance by having a rectal volume greater than the threshold for the dose level (N). Logistic regression, classification and regression tree, and random forest models were compared for their ability to discriminate between class outcomes. Performance metrics included area under the receiver operator characteristic curve (AUC), sensitivity, specificity, positive predictive value and negative predictive value. Finally, three classification threshold levels were evaluated for their impact on model performance.

RESULTS

A total of 176 eligible participants were recruited. Variable importance differed between model methods. Area under the receiver operator characteristic curve performance varied greatly across the different rectal dose levels and between models. Logistic regression performed best at the 83% reference dose level with an AUC value of 0.844, while random forest demonstrated best discrimination at the 96% reference dose level with an AUC value of 0.733. In addition to the standard classification probability threshold of 50%, the clinically representative threshold of 10%, and the best threshold from each AUC plot was applied to compare metrics. This showed that using a 50% threshold and the best threshold from the AUC plots yields similar results. Conversely, applying the more conservative clinical threshold of 10% maximized the sensitivity at V83_RD and V96_RD for all model types. Based on the combination of the metrics, logistic regression would be the recommendation for rectal protocol compliance prediction at the 83% reference dose level, and random forest for the 96% reference dose level, particularly when using the clinical probability threshold of 10%.

CONCLUSIONS

This study demonstrated the efficacy of statistical machine learning models on rectal protocol compliance prediction for prostate cancer EBRT dosimetric planning. Both logistic regression and random forest modeling approaches demonstrated good discriminative ability for predicting class outcomes in the upper dose levels. Application of a conservative clinical classification threshold maximized sensitivity and further confirmed the value of logistic regression and random forest models over classification and regression tree.

摘要

目的

为前列腺癌治疗制定剂量学外照射放射治疗(EBRT)计划时,限制直肠剂量可能是最具挑战性的方面之一。水凝胶间隔器等直肠保护装置提供了前列腺和直肠之间更大空间的可能性,从而降低直肠剂量并可能降低损伤。本研究旨在帮助确定基于 EBRT 模拟和计划过程前的直肠剂量估计值符合率,哪些患者发生直肠损伤的风险更高。比较了三种统计机器学习方法,以比较其应用不同分类阈值时预测直肠剂量结果的能力。

方法

邀请接受常规分割 EBRT 治疗至参考剂量 74-78Gy 的前列腺癌患者参与研究。从每个剂量计划的剂量体积直方图数据中量化了计划直肠体积,以接收参考剂量的 50%、83%、96%和 102%。对于每个剂量水平,将患者分为两组:要么通过直肠体积小于该剂量水平的临床可接受阈值来符合耐受性(Y),要么通过直肠体积大于该剂量水平的阈值来违反耐受性(N)。比较逻辑回归、分类和回归树以及随机森林模型在区分类别的能力。性能指标包括接收者操作特征曲线(ROC)下的面积(AUC)、敏感性、特异性、阳性预测值和阴性预测值。最后,评估了三个分类阈值对模型性能的影响。

结果

共招募了 176 名合格参与者。模型方法之间的变量重要性不同。不同直肠剂量水平和模型之间的 ROC 曲线性能差异很大。逻辑回归在 83%参考剂量水平的表现最佳,AUC 值为 0.844,而随机森林在 96%参考剂量水平的表现最佳,AUC 值为 0.733。除了标准分类概率阈值 50%、临床代表性阈值 10%和每个 AUC 图的最佳阈值外,还应用于比较指标。这表明使用 50%的阈值和 AUC 图的最佳阈值会产生相似的结果。相反,应用更保守的临床阈值 10%可以最大化所有模型类型在 V83_RD 和 V96_RD 处的敏感性。基于该指标的组合,逻辑回归将成为 83%参考剂量水平预测直肠方案依从性的推荐方法,而随机森林则适用于 96%参考剂量水平,特别是在使用临床概率阈值 10%时。

结论

本研究证明了统计机器学习模型在前列腺癌 EBRT 剂量学计划中预测直肠方案依从性的有效性。逻辑回归和随机森林建模方法都在预测较高剂量水平的分类结果方面表现出良好的辨别能力。应用保守的临床分类阈值可最大程度地提高敏感性,并进一步证实逻辑回归和随机森林模型优于分类和回归树。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验