Suppr超能文献

心率变异性测量可预测 ED 脓毒症患者的疾病严重程度和不良预后。

Heart rate variability measures for prediction of severity of illness and poor outcome in ED patients with sepsis.

机构信息

Department of Emergency Medicine, Weill Medical College of Cornell University, New York, NY, United States of America; Division of Pulmonary and Critical Care Medicine, Weill Medical College of Cornell University, New York, NY, United States of America; Department of Emergency Medicine, Albert Einstein College of Medicine, Bronx, NY, United States of America.

Department of Emergency Medicine, Weill Medical College of Cornell University, New York, NY, United States of America.

出版信息

Am J Emerg Med. 2020 Dec;38(12):2607-2613. doi: 10.1016/j.ajem.2020.01.012. Epub 2020 Jan 7.

Abstract

INTRODUCTION

This study evaluates the utility of heart rate variability (HRV) for assessment of severity of illness and poor outcome in Emergency Department (ED) patients with sepsis. HRV measures evaluated included low frequency (LF) signal, high frequency (HF) signal, and deviations in LF and HF signal from age-adjusted reference values.

METHODS

This was a prospective, observational study. Seventy-two adult ED patients were assessed within 6 h of arrival.

RESULTS

Severity of illness as defined by sepsis subtype correlated with decreased LF signal (sepsis: 70.68 ± 22.95, severe sepsis: 54.00 ± 28.41, septic shock: 45.54 ± 23.31, p = 0.02), increased HF signal (sepsis: 27.87 ± 19.42, severe sepsis: 44.63 ± 27.29, septic shock: 47.66 ± 20.98, p = 0.01), increasingly negative deviations in LF signal (sepsis: 0.41 ± 24.53, severe sepsis: -21.43 ± 30.09, septic shock -30.39 ± 26.09, p = 0.005) and increasingly positive deviations in HF signal (sepsis: -1.86 ± 21.09, severe sepsis: 20.07 ± 29.03, septic shock: 23.6 ± 24.17, p = 0.004). Composite poor outcome correlated with decreased LF signal (p = 0.008), increased HF signal (p = 0.03), large negative deviations in LF signal (p = 0.004) and large positive deviations in HF signal (p = 0.02). Deviations in LF and HF signal from age-adjusted reference values correlated with individual measures of poor outcome with greater consistency than LF or HF signal.

DISCUSSION

Accounting for the influence of age on baseline HRV signal improves the predictive value of HRV measures in ED patients with sepsis.

摘要

简介

本研究评估了心率变异性(HRV)在评估急诊科(ED)脓毒症患者疾病严重程度和不良预后方面的作用。评估的 HRV 指标包括低频(LF)信号、高频(HF)信号以及 LF 和 HF 信号与年龄校正参考值的偏差。

方法

这是一项前瞻性观察研究。72 名成年 ED 患者在入院后 6 小时内接受评估。

结果

根据脓毒症亚型定义的疾病严重程度与 LF 信号降低相关(脓毒症:70.68±22.95,严重脓毒症:54.00±28.41,脓毒性休克:45.54±23.31,p=0.02),HF 信号升高(脓毒症:27.87±19.42,严重脓毒症:44.63±27.29,脓毒性休克:47.66±20.98,p=0.01),LF 信号的负偏差逐渐增加(脓毒症:0.41±24.53,严重脓毒症:-21.43±30.09,脓毒性休克:-30.39±26.09,p=0.005),HF 信号的正偏差逐渐增加(脓毒症:-1.86±21.09,严重脓毒症:20.07±29.03,脓毒性休克:23.6±24.17,p=0.004)。复合不良预后与 LF 信号降低相关(p=0.008),HF 信号升高(p=0.03),LF 信号的大负偏差(p=0.004)和 HF 信号的大正偏差(p=0.02)相关。LF 和 HF 信号与年龄校正参考值的偏差与单个不良预后指标相关,一致性优于 LF 或 HF 信号。

讨论

考虑到年龄对基线 HRV 信号的影响,可以提高 HRV 指标在 ED 脓毒症患者中的预测价值。

相似文献

2
Heart rate variability in emergency department patients with sepsis.急诊科脓毒症患者的心率变异性
Acad Emerg Med. 2002 Jul;9(7):661-70. doi: 10.1111/j.1553-2712.2002.tb02143.x.

引用本文的文献

3
COVID-19 surveillance based on consumer wearable devices.基于消费者可穿戴设备的新冠病毒监测
Digit Health. 2024 Apr 24;10:20552076241247374. doi: 10.1177/20552076241247374. eCollection 2024 Jan-Dec.
7
Can heart rate variability be a bio-index of hope? A pilot study.心率变异性能否作为希望的生物指标?一项初步研究。
Front Psychiatry. 2023 Mar 21;14:1119925. doi: 10.3389/fpsyt.2023.1119925. eCollection 2023.

本文引用的文献

3
Deaths: Final Data for 2014.死亡:2014年最终数据。
Natl Vital Stat Rep. 2016 Jun;65(4):1-122.
4
Reference values for time- and frequency-domain heart rate variability measures.时域和频域心率变异性测量的参考值。
Heart Rhythm. 2016 Jun;13(6):1309-16. doi: 10.1016/j.hrthm.2016.02.006. Epub 2016 Feb 12.
7
Influence of age and gender on autonomic regulation of heart.年龄和性别对心脏自主调节的影响。
J Clin Monit Comput. 2013 Jun;27(3):259-64. doi: 10.1007/s10877-012-9424-3. Epub 2013 Jan 8.
10
Heart rate variability - a historical perspective.心率变异性——历史视角
Front Physiol. 2011 Nov 29;2:86. doi: 10.3389/fphys.2011.00086. eCollection 2011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验