Suppr超能文献

将心率变异性(HRnV)添加到临床评估中,可能会改善急诊科对发热婴幼儿严重细菌感染的预测:一项前瞻性观察研究。

Adding heart rate n-variability (HRnV) to clinical assessment potentially improves prediction of serious bacterial infections in young febrile infants at the emergency department: a prospective observational study.

作者信息

Chong Shu-Ling, Niu Chenglin, Piragasam Rupini, Koh Zhi Xiong, Guo Dagang, Lee Jan Hau, Ong Gene Yong-Kwang, Ong Marcus Eng Hock, Liu Nan

机构信息

Duke-NUS Medical School, Singapore, Singapore.

Department of Emergency Medicine, KK Women's and Children's Hospital, Singapore, Singapore.

出版信息

Ann Transl Med. 2023 Jan 15;11(1):6. doi: 10.21037/atm-22-3303. Epub 2022 Dec 16.

Abstract

BACKGROUND

We aim to investigate the utility of heart rate variability (HRV) and heart rate n-variability (HRnV) in addition to vital signs and blood biomarkers, among febrile young infants at risk of serious bacterial infections (SBIs).

METHODS

We performed a prospective observational study between December 2017 and November 2021 in a tertiary paediatric emergency department (ED). We included febrile infants <90 days old with a temperature ≥38 ℃. We obtained HRV and HRnV parameters via a single lead electrocardiogram. HRV measures beat-to-beat (R-R) oscillation and reflects autonomic nervous system (ANS) regulation. HRnV includes overlapping and non-overlapping R-R intervals and provides additional physiological information. We defined SBIs as meningitis, bacteraemia and urinary tract infections (UTIs). We performed area under curve (AUC) analysis to assess predictive performance.

RESULTS

We recruited 330 and analysed 312 infants. The median age was 35.5 days (interquartile range 13.0-61.0); 74/312 infants (23.7%) had SBIs with the most common being UTIs (66/72, 91.7%); 2 infants had co-infections. No patients died and 32/312 (10.3%) received fluid resuscitation. Adding HRV and HRnV to demographics and vital signs at ED triage successively improved the AUC from 0.765 [95% confidence interval (CI): 0.705-0.825] to 0.776 (95% CI: 0.718-0.835) and 0.807 (95% CI: 0.752-0.861) respectively. The final model including demographics, vital signs, HRV, HRnV and blood biomarkers had an AUC of 0.874 (95% CI: 0.828-0.921).

CONCLUSIONS

Addition of HRV and HRnV to current assessment tools improved the prediction of SBIs among febrile infants at ED triage. We intend to validate our findings and translate them into tools for clinical care in the ED.

摘要

背景

我们旨在研究除生命体征和血液生物标志物外,心率变异性(HRV)和心率n变异性(HRnV)在有严重细菌感染(SBI)风险的发热幼儿中的应用价值。

方法

2017年12月至2021年11月期间,我们在一家三级儿科急诊科进行了一项前瞻性观察研究。纳入体温≥38℃的90日龄以下发热婴儿。我们通过单导联心电图获取HRV和HRnV参数。HRV测量逐搏(R-R)振荡,反映自主神经系统(ANS)调节。HRnV包括重叠和非重叠的R-R间期,并提供额外的生理信息。我们将SBI定义为脑膜炎、菌血症和尿路感染(UTI)。我们进行曲线下面积(AUC)分析以评估预测性能。

结果

我们招募了330名婴儿并分析了312名。中位年龄为35.5天(四分位间距13.0 - 61.0);74/312名婴儿(23.7%)患有SBI,最常见的是UTI(66/72,91.7%);2名婴儿有合并感染。无患者死亡,32/312名(10.3%)接受了液体复苏。在急诊科分诊时,将HRV和HRnV依次添加到人口统计学和生命体征中,AUC分别从0.765[95%置信区间(CI):0.705 - 0.825]提高到0.776(95%CI:0.718 - 0.835)和0.807(95%CI:0.752 - 0.861)。包括人口统计学、生命体征、HRV、HRnV和血液生物标志物的最终模型的AUC为0.874(95%CI:0.828 - 0.921)。

结论

在当前评估工具中添加HRV和HRnV可改善急诊科分诊时发热婴儿SBI的预测。我们打算验证我们的发现并将其转化为急诊科临床护理工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0296/9906196/c45ea5aabd52/atm-11-01-6-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验