Suppr超能文献

预测登革热向重症的进展。

Towards Predicting Progression to Severe Dengue.

机构信息

Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.

Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.

出版信息

Trends Microbiol. 2020 Jun;28(6):478-486. doi: 10.1016/j.tim.2019.12.003. Epub 2020 Jan 22.

Abstract

There is an urgent need for prognostic assays to predict progression to severe dengue infection, which is a major global threat. While the majority of symptomatic dengue patients experience an acute febrile illness, 5-20% progress to severe infection associated with significant morbidity and mortality. Early monitoring and administration of supportive care reduce mortality and clinically usable biomarkers to predict severe dengue are needed. Here, we review recent discoveries of gene sets, anti-dengue antibody properties, and inflammatory markers with potential utility as predictors of disease progression. Upon larger scale validation and development of affordable sample-to-answer technologies, some of these biomarkers may be utilized to develop the first prognostic assay for improving patient care and allocating healthcare resources more effectively in dengue endemic countries.

摘要

目前迫切需要预后检测方法来预测严重登革热感染,这是一个重大的全球威胁。大多数有症状的登革热患者会出现急性发热疾病,但有 5-20%的患者会进展为严重感染,伴有显著的发病率和死亡率。早期监测和支持性护理可降低死亡率,需要具有临床应用价值的生物标志物来预测严重登革热。在这里,我们回顾了最近发现的基因集、抗登革热抗体特性和炎症标志物,它们具有作为疾病进展预测因子的潜在用途。在更大规模的验证和具有成本效益的样本到答案技术的开发之后,其中一些生物标志物可能会被用于开发首个预后检测方法,以改善患者护理,并在登革热流行国家更有效地分配医疗资源。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验