National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Tainan, Taiwan.
Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
Front Cell Infect Microbiol. 2022 Feb 10;12:831281. doi: 10.3389/fcimb.2022.831281. eCollection 2022.
Dengue virus, a positive-sense single-stranded RNA virus, continuously threatens human health. Although several criteria for evaluation of severe dengue have been recently established, the ability to prognose the risk of severe outcomes for dengue patients remains limited. Mutant spectra of RNA viruses, including single nucleotide variants (SNVs) and defective virus genomes (DVGs), contribute to viral virulence and growth. Here, we determine the potency of intrahost viral population in dengue patients with primary infection that progresses into severe dengue. A total of 65 dengue virus serotype 2 infected patients in primary infection including 17 severe cases were enrolled. We utilized deep sequencing to directly define the frequency of SNVs and detection times of DVGs in sera of dengue patients and analyzed their associations with severe dengue. Among the detected SNVs and DVGs, the frequencies of 9 SNVs and the detection time of 1 DVG exhibited statistically significant differences between patients with dengue fever and those with severe dengue. By utilizing the detected frequencies/times of the selected SNVs/DVG as features, the machine learning model showed high average with a value of area under the receiver operating characteristic curve (AUROC, 0.966 ± 0.064). The elevation of the frequency of SNVs at E (nucleotide position 995 and 2216), NS2A (nucleotide position 4105), NS3 (nucleotide position 4536, 4606), and NS5 protein (nucleotide position 7643 and 10067) and the detection times of the selected DVG that had a deletion junction in the E protein region (nucleotide positions of the junction: between 969 and 1022) increased the possibility of dengue patients for severe dengue. In summary, we demonstrated the detected frequencies/times of SNVs/DVG in dengue patients associated with severe disease and successfully utilized them to discriminate severe patients using machine learning algorithm. The identified SNVs and DVGs that are associated with severe dengue will expand our understanding of intrahost viral population in dengue pathogenesis.
登革热病毒是一种正链单链 RNA 病毒,持续威胁着人类健康。尽管最近已经确定了几种评估重症登革热的标准,但预测登革热患者发生严重后果的风险的能力仍然有限。RNA 病毒的突变谱,包括单核苷酸变异 (SNVs) 和缺陷病毒基因组 (DVGs),有助于病毒的毒力和生长。在这里,我们确定了原发性感染进展为重症登革热的登革热患者体内病毒群体的效力。共招募了 65 名登革热病毒血清型 2 感染的原发性感染患者,包括 17 例重症病例。我们利用深度测序直接确定了登革热患者血清中 SNVs 的频率和 DVG 的检测时间,并分析了它们与重症登革热的关系。在检测到的 SNVs 和 DVGs 中,登革热患者中 9 个 SNVs 的频率和 1 个 DVG 的检测时间在登革热患者和重症登革热患者之间存在统计学差异。利用所选 SNVs/DVG 的检测频率/时间作为特征,机器学习模型的平均表现值为接受者操作特征曲线下面积 (AUROC,0.966±0.064)。E 蛋白 (核苷酸位置 995 和 2216)、NS2A (核苷酸位置 4105)、NS3 (核苷酸位置 4536、4606) 和 NS5 蛋白 (核苷酸位置 7643 和 10067) 中 SNVs 频率的升高以及 E 蛋白区域缺失接头的选定 DVG 的检测时间 (接头核苷酸位置:969 与 1022 之间) 增加了登革热患者发展为重症登革热的可能性。总之,我们证明了登革热患者中与严重疾病相关的 SNVs/DVG 的检测频率/时间,并成功利用机器学习算法利用它们来区分重症患者。与重症登革热相关的鉴定出的 SNVs 和 DVGs 将扩展我们对登革热发病机制中体内病毒群体的理解。