Suppr超能文献

实时跟踪环境变化以实现生物钟同步。

Synchronization of the circadian clock to the environment tracked in real time.

机构信息

Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093.

School of Natural Sciences, University of California, Merced, CA 95343.

出版信息

Proc Natl Acad Sci U S A. 2023 Mar 28;120(13):e2221453120. doi: 10.1073/pnas.2221453120. Epub 2023 Mar 20.

Abstract

The circadian system of the cyanobacterium PCC 7942 relies on a three-protein nanomachine (KaiA, KaiB, and KaiC) that undergoes an oscillatory phosphorylation cycle with a period of ~24 h. This core oscillator can be reconstituted in vitro and is used to study the molecular mechanisms of circadian timekeeping and entrainment. Previous studies showed that two key metabolic changes that occur in cells during the transition into darkness, changes in the ATP/ADP ratio and redox status of the quinone pool, are cues that entrain the circadian clock. By changing the ATP/ADP ratio or adding oxidized quinone, one can shift the phase of the phosphorylation cycle of the core oscillator in vitro. However, the in vitro oscillator cannot explain gene expression patterns because the simple mixture lacks the output components that connect the clock to genes. Recently, a high-throughput in vitro system termed the in vitro clock (IVC) that contains both the core oscillator and the output components was developed. Here, we used IVC reactions and performed massively parallel experiments to study entrainment, the synchronization of the clock with the environment, in the presence of output components. Our results indicate that the IVC better explains the in vivo clock-resetting phenotypes of wild-type and mutant strains and that the output components are deeply engaged with the core oscillator, affecting the way input signals entrain the core pacemaker. These findings blur the line between input and output pathways and support our previous demonstration that key output components are fundamental parts of the clock.

摘要

蓝藻 PCC 7942 的生物钟系统依赖于一个由三种蛋白质组成的纳米机器(KaiA、KaiB 和 KaiC),该纳米机器经历一个约 24 小时的振荡磷酸化循环。这个核心振荡器可以在体外重新构成,并用于研究生物钟计时和同步的分子机制。以前的研究表明,细胞在过渡到黑暗时发生的两个关键代谢变化,即 ATP/ADP 比和醌池的氧化还原状态的变化,是使生物钟同步的线索。通过改变 ATP/ADP 比或添加氧化的醌,可以在体外改变核心振荡器磷酸化循环的相位。然而,体外振荡器不能解释基因表达模式,因为简单的混合物缺乏将时钟与基因连接起来的输出组件。最近,开发了一种称为体外时钟(IVC)的高通量体外系统,该系统既包含核心振荡器,也包含输出组件。在这里,我们使用 IVC 反应并进行大规模平行实验,研究在存在输出组件的情况下,时钟与环境的同步,即同步现象。我们的结果表明,IVC 更好地解释了野生型和突变株的体内时钟复位表型,并且输出组件与核心振荡器深度结合,影响输入信号使核心节拍器同步的方式。这些发现模糊了输入和输出途径之间的界限,并支持我们之前的演示,即关键的输出组件是时钟的基本部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bf4/10068778/e899249298bb/pnas.2221453120fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验