Suppr超能文献

昼夜节律数据周期估计方法的优势与局限性。

Strengths and limitations of period estimation methods for circadian data.

作者信息

Zielinski Tomasz, Moore Anne M, Troup Eilidh, Halliday Karen J, Millar Andrew J

机构信息

SynthSys, University of Edinburgh, Edinburgh, United Kingdom.

EPCC, University of Edinburgh, Edinburgh, United Kingdom.

出版信息

PLoS One. 2014 May 8;9(5):e96462. doi: 10.1371/journal.pone.0096462. eCollection 2014.

Abstract

A key step in the analysis of circadian data is to make an accurate estimate of the underlying period. There are many different techniques and algorithms for determining period, all with different assumptions and with differing levels of complexity. Choosing which algorithm, which implementation and which measures of accuracy to use can offer many pitfalls, especially for the non-expert. We have developed the BioDare system, an online service allowing data-sharing (including public dissemination), data-processing and analysis. Circadian experiments are the main focus of BioDare hence performing period analysis is a major feature of the system. Six methods have been incorporated into BioDare: Enright and Lomb-Scargle periodograms, FFT-NLLS, mFourfit, MESA and Spectrum Resampling. Here we review those six techniques, explain the principles behind each algorithm and evaluate their performance. In order to quantify the methods' accuracy, we examine the algorithms against artificial mathematical test signals and model-generated mRNA data. Our re-implementation of each method in Java allows meaningful comparisons of the computational complexity and computing time associated with each algorithm. Finally, we provide guidelines on which algorithms are most appropriate for which data types, and recommendations on experimental design to extract optimal data for analysis.

摘要

昼夜节律数据分析中的一个关键步骤是准确估计潜在周期。有许多不同的技术和算法可用于确定周期,它们都有不同的假设和不同程度的复杂性。选择使用哪种算法、哪种实现方式以及哪种准确性度量可能会有许多陷阱,尤其是对于非专业人士来说。我们开发了BioDare系统,这是一项允许数据共享(包括公开发布)、数据处理和分析的在线服务。昼夜节律实验是BioDare的主要关注点,因此进行周期分析是该系统的一个主要功能。BioDare中纳入了六种方法:恩赖特和 Lomb-Scargle 周期图、FFT-NLLS、mFourfit、MESA 和频谱重采样。在此我们回顾这六种技术,解释每种算法背后的原理并评估它们的性能。为了量化这些方法的准确性,我们针对人工数学测试信号和模型生成的mRNA数据来检验这些算法。我们用Java对每种方法进行的重新实现,使得能够对与每种算法相关的计算复杂性和计算时间进行有意义的比较。最后,我们提供了关于哪些算法最适合哪些数据类型的指导方针,以及关于实验设计的建议,以便提取最佳数据进行分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abaf/4014635/f960fb1dc1bc/pone.0096462.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验