Nagai Yasushi
Montanuniversität, Department Mathematik und Informationstechnologie, Lehrstuhl für Mathematik und Statistik, Franz Josef Strasse 18, 8700 Leoben, Austria.
Discrete Comput Geom. 2019;62(2):241-291. doi: 10.1007/s00454-019-00081-2. Epub 2019 Jul 17.
We define a general framework that includes objects such as tilings, Delone sets, functions, and measures. We define local derivability and mutual local derivability (MLD) between any two of these objects in order to describe their interrelation. This is a generalization of the local derivability and MLD (or S-MLD) for tilings and Delone sets which are used in literature, under a mild assumption. We show that several canonical maps in aperiodic order send an object to one that is MLD with . Moreover, we show that, for an object and a class of objects, a mild condition on them ensures that there exists some that is MLD with . As an application, we study pattern-equivariant functions. In particular, we show that the space of all pattern-equivariant functions contains all the information on the original object up to MLD, in a quite general setting.
我们定义了一个通用框架,其中包括诸如平铺、德洛内集、函数和测度等对象。我们定义了这些对象中任意两个之间的局部可导性和相互局部可导性(MLD),以描述它们之间的相互关系。这是文献中用于平铺和德洛内集的局部可导性和MLD(或S-MLD)在一个温和假设下的推广。我们证明了非周期序中的几个典范映射将一个对象映射到与它MLD的另一个对象。此外,我们证明了,对于一个对象和一类对象,它们之间的一个温和条件确保存在某个与它MLD的对象。作为一个应用,我们研究模式等变函数。特别地,我们证明了在一个相当一般的情形下,所有模式等变函数的空间包含了关于原始对象直至MLD的所有信息。