Suppr超能文献

来自非周期单面体平铺(幽灵平铺)的周期性衍射。附录。

Periodic diffraction from an aperiodic monohedral tiling - the Spectre tiling. Addendum.

作者信息

Kaplan Craig S, O'Keeffe Michael, Treacy Michael M J

机构信息

School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada.

School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA.

出版信息

Acta Crystallogr A Found Adv. 2024 Nov 1;80(Pt 6):460-463. doi: 10.1107/S2053273324008945. Epub 2024 Oct 8.

Abstract

This article describes the diffraction pattern (2-periodic Fourier transform) from the vertices of a large patch of the recently discovered Spectre' tiling - a strictly chiral aperiodic monotile. It was reported recently that the diffraction pattern of the related weakly chiral aperiodic Hat' monotile was 2-periodic with chiral plane-group symmetry p6 [Kaplan et al. (2024). Acta Cryst. A80, 72-78]. The diffraction periodicity arises because the Hat tiling is a systematic aperiodic deletion of vertices from the 2-periodic hexagonal mta tiling. Despite the similarity of the Hat and Spectre tilings, the Spectre tiling is not aligned with a 2-periodic lattice, and its diffraction pattern is non-periodic with chiral point symmetry 6 about the origin.

摘要

本文描述了来自最近发现的“幽灵”平铺一大块顶点的衍射图案(二维周期傅里叶变换)——一种严格手性的非周期单瓷砖。最近有报道称,相关的弱手性非周期“帽子”单瓷砖的衍射图案是具有手性平面群对称性p6的二维周期图案[卡普兰等人(2024年)。《晶体学报》A80卷,72 - 78页]。衍射周期性的出现是因为帽子平铺是二维周期六边形mta平铺顶点的系统非周期删除。尽管帽子和平铺与幽灵平铺相似,但幽灵平铺与二维周期晶格不对齐,其衍射图案关于原点具有手性点对称性6且是非周期的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验