Kaplan Craig S, O'Keeffe Michael, Treacy Michael M J
School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada.
School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA.
Acta Crystallogr A Found Adv. 2024 Nov 1;80(Pt 6):460-463. doi: 10.1107/S2053273324008945. Epub 2024 Oct 8.
This article describes the diffraction pattern (2-periodic Fourier transform) from the vertices of a large patch of the recently discovered Spectre' tiling - a strictly chiral aperiodic monotile. It was reported recently that the diffraction pattern of the related weakly chiral aperiodic Hat' monotile was 2-periodic with chiral plane-group symmetry p6 [Kaplan et al. (2024). Acta Cryst. A80, 72-78]. The diffraction periodicity arises because the Hat tiling is a systematic aperiodic deletion of vertices from the 2-periodic hexagonal mta tiling. Despite the similarity of the Hat and Spectre tilings, the Spectre tiling is not aligned with a 2-periodic lattice, and its diffraction pattern is non-periodic with chiral point symmetry 6 about the origin.
本文描述了来自最近发现的“幽灵”平铺一大块顶点的衍射图案(二维周期傅里叶变换)——一种严格手性的非周期单瓷砖。最近有报道称,相关的弱手性非周期“帽子”单瓷砖的衍射图案是具有手性平面群对称性p6的二维周期图案[卡普兰等人(2024年)。《晶体学报》A80卷,72 - 78页]。衍射周期性的出现是因为帽子平铺是二维周期六边形mta平铺顶点的系统非周期删除。尽管帽子和平铺与幽灵平铺相似,但幽灵平铺与二维周期晶格不对齐,其衍射图案关于原点具有手性点对称性6且是非周期的。