Tu Liyun, Vicory Jared, Elhabian Shireen, Paniagua Beatriz, Prieto Juan Carlos, Damon James N, Whitaker Ross, Styner Martin, Pizer Stephen M
Chongqing University, Shapingba, China.
University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Comput Vis Image Underst. 2016 Oct;151:72-79. doi: 10.1016/j.cviu.2015.11.002. Epub 2016 Sep 21.
Statistical analysis of shape representations relies on having good correspondence across a population. Improving correspondence yields improved statistics. Point distribution models (PDMs) are often used to represent object boundaries. Skeletal representations (s-reps) model object widths and boundary directions as well as boundary positions, so they should yield better correspondence. We present two methods: one for continuously interpolating a discretely-sampled skeletal model and one for improving correspondence by using this interpolation to shift skeletal samples to new positions. The interpolation operates by an extension of the mathematics of medial structures. As with Cates' boundary-based method, we evaluate correspondence in terms of regularity and shape-feature population entropies. Evaluation on both synthetic and real data shows that our method both improves correspondence of s-rep models fit to segmented lateral ventricles and that the combined boundary-and-skeletal PDMs implied by these optimized s-reps have better correspondence than optimized boundary PDMs.
形状表示的统计分析依赖于在总体中具有良好的对应关系。改善对应关系会产生更好的统计结果。点分布模型(PDM)常用于表示物体边界。骨骼表示(s-rep)对物体宽度、边界方向以及边界位置进行建模,因此它们应该能产生更好的对应关系。我们提出了两种方法:一种用于对离散采样的骨骼模型进行连续插值,另一种用于通过使用这种插值将骨骼样本移动到新位置来改善对应关系。该插值通过扩展中轴结构的数学方法来操作。与基于边界的Cates方法一样,我们根据正则性和形状特征总体熵来评估对应关系。对合成数据和真实数据的评估表明,我们的方法既改善了拟合分割后的侧脑室的s-rep模型的对应关系,而且这些优化后的s-rep所隐含的组合边界和骨骼PDM比优化后的边界PDM具有更好的对应关系。