Suppr超能文献

将无分支骨骼结构与物体相适配。

Fitting unbranching skeletal structures to objects.

作者信息

Liu Zhiyuan, Hong Junpyo, Vicory Jared, Damon James N, Pizer Stephen M

机构信息

Department of Computer Science, University of North Carolina at Chapel Hill, USA.

GE Healthcare, USA.

出版信息

Med Image Anal. 2021 May;70:102020. doi: 10.1016/j.media.2021.102020. Epub 2021 Mar 4.

Abstract

Representing an object by a skeletal structure can be powerful for statistical shape analysis if there is good correspondence of the representations within a population. Many anatomic objects have a genus-zero boundary and can be represented by a smooth unbranching skeletal structure that can be discretely approximated. We describe how to compute such a discrete skeletal structure ("d-s-rep") for an individual 3D shape with the desired correspondence across cases. The method involves fitting a d-s-rep to an input representation of an object's boundary. A good fit is taken to be one whose skeletally implied boundary well approximates the target surface in terms of low order geometric boundary properties: (1) positions, (2) tangent fields, (3) various curvatures. Our method involves a two-stage framework that first, roughly yet consistently fits a skeletal structure to each object and second, refines the skeletal structure such that the shape of the implied boundary well approximates that of the object. The first stage uses a stratified diffeomorphism to produce topologically non-self-overlapping, smooth and unbranching skeletal structures for each object of a population. The second stage uses loss terms that measure geometric disagreement between the skeletally implied boundary and the target boundary and avoid self-overlaps in the boundary. By minimizing the total loss, we end up with a good d-s-rep for each individual shape. We demonstrate such d-s-reps for various human brain structures. The framework is accessible and extensible by clinical users, researchers and developers as an extension of SlicerSALT, which is based on 3D Slicer.

摘要

如果在一个群体中表示之间存在良好的对应关系,那么通过骨骼结构来表示一个物体对于统计形状分析可能会很有效。许多解剖物体具有零亏格边界,并且可以由一个可以离散近似的光滑无分支骨骼结构来表示。我们描述了如何为单个3D形状计算这样一个离散骨骼结构(“d-s-rep”),并在不同病例之间具有所需的对应关系。该方法包括将一个d-s-rep拟合到物体边界的输入表示上。一个好的拟合被认为是其骨骼隐含边界在低阶几何边界属性方面能很好地近似目标表面的拟合:(1)位置,(2)切场,(3)各种曲率。我们的方法涉及一个两阶段框架,首先,大致但一致地将一个骨骼结构拟合到每个物体上,其次,细化骨骼结构,使得隐含边界的形状能很好地近似物体的形状。第一阶段使用分层微分同胚为群体中的每个物体生成拓扑上非自重叠、光滑且无分支的骨骼结构。第二阶段使用损失项来衡量骨骼隐含边界和目标边界之间的几何差异,并避免边界中的自重叠。通过最小化总损失,我们最终为每个个体形状得到一个良好的d-s-rep。我们展示了各种人类脑结构的这种d-s-rep。作为基于3D Slicer的SlicerSALT的扩展,临床用户、研究人员和开发者可以访问并扩展该框架。

相似文献

1
Fitting unbranching skeletal structures to objects.将无分支骨骼结构与物体相适配。
Med Image Anal. 2021 May;70:102020. doi: 10.1016/j.media.2021.102020. Epub 2021 Mar 4.
2
Entropy-based Correspondence Improvement of Interpolated Skeletal Models.基于熵的插值骨骼模型对应性改进
Comput Vis Image Underst. 2016 Oct;151:72-79. doi: 10.1016/j.cviu.2015.11.002. Epub 2016 Sep 21.
4
Skeletal Shape Correspondence Through Entropy.基于熵的骨骼形态对应。
IEEE Trans Med Imaging. 2018 Jan;37(1):1-11. doi: 10.1109/TMI.2017.2755550. Epub 2017 Sep 21.
5
Fitting Skeletal Object Models Using Spherical Harmonics Based Template Warping.使用基于球谐函数的模板变形来拟合骨骼对象模型
IEEE Signal Process Lett. 2015 Dec;22(12):2269-2273. doi: 10.1109/LSP.2015.2476366. Epub 2015 Sep 3.
6
Skeletons, Object Shape, Statistics.骨骼、物体形状、统计学
Front Comput Sci. 2022 Oct;4. doi: 10.3389/fcomp.2022.842637. Epub 2022 Oct 18.
7
Deformable M-Reps for 3D Medical Image Segmentation.用于3D医学图像分割的可变形M-Reps
Int J Comput Vis. 2003 Nov 1;55(2-3):85-106. doi: 10.1023/a:1026313132218.
8
Continuous medial representation for anatomical structures.解剖结构的连续内侧表示。
IEEE Trans Med Imaging. 2006 Dec;25(12):1547-64. doi: 10.1109/tmi.2006.884634.

引用本文的文献

3
SlicerSALT: From Medical Images to Quantitative Insights of Anatomy.SlicerSALT:从医学图像到解剖学的定量见解
Shape Med Imaging (2023). 2023 Oct;14350:201-210. doi: 10.1007/978-3-031-46914-5_16. Epub 2023 Oct 31.
4
SKELETAL POINT REPRESENTATIONS WITH GEOMETRIC DEEP LEARNING.基于几何深度学习的骨骼点表示
Proc IEEE Int Symp Biomed Imaging. 2023 Apr;2023. doi: 10.1109/isbi53787.2023.10230505. Epub 2023 Sep 1.
5
Skeletons, Object Shape, Statistics.骨骼、物体形状、统计学
Front Comput Sci. 2022 Oct;4. doi: 10.3389/fcomp.2022.842637. Epub 2022 Oct 18.

本文引用的文献

1
Diffeomorphic Medial Modeling.微分同胚内侧建模
Inf Process Med Imaging. 2019 Jun;11492:208-220. doi: 10.1007/978-3-030-20351-1_16. Epub 2019 May 22.
2
Entropy-based Correspondence Improvement of Interpolated Skeletal Models.基于熵的插值骨骼模型对应性改进
Comput Vis Image Underst. 2016 Oct;151:72-79. doi: 10.1016/j.cviu.2015.11.002. Epub 2016 Sep 21.
3
SlicerSALT: Shape AnaLysis Toolbox.切片器SALT:形状分析工具箱。
Shape Med Imaging (2018). 2018 Sep;11167:65-72. doi: 10.1007/978-3-030-04747-4_6. Epub 2018 Nov 23.
4
Skeletal Shape Correspondence Through Entropy.基于熵的骨骼形态对应。
IEEE Trans Med Imaging. 2018 Jan;37(1):1-11. doi: 10.1109/TMI.2017.2755550. Epub 2017 Sep 21.
8
Deformable M-Reps for 3D Medical Image Segmentation.用于3D医学图像分割的可变形M-Reps
Int J Comput Vis. 2003 Nov 1;55(2-3):85-106. doi: 10.1023/a:1026313132218.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验