Iyer Krithika, Morris Alan, Zenger Brian, Karanth Karthik, Khan Nawazish, Orkild Benjamin A, Korshak Oleksandre, Elhabian Shireen
University of Utah, School of Computing, Salt Lake City, UT, United States.
University of Utah, Scientific Computing and Imaging Institute, Salt Lake City, UT, United States.
Front Bioeng Biotechnol. 2023 Jan 12;10:1078800. doi: 10.3389/fbioe.2022.1078800. eCollection 2022.
Statistical shape modeling (SSM) is a valuable and powerful tool to generate a detailed representation of complex anatomy that enables quantitative analysis of shapes and their variations. SSM applies mathematics, statistics, and computing to parse the shape into some quantitative representation (such as correspondence points or landmarks) which can be used to study the covariance patterns of the shapes and answer various questions about the anatomical variations across the population. Complex anatomical structures have many diverse parts with varying interactions or intricate architecture. For example, the heart is a four-chambered organ with several shared boundaries between chambers. Subtle shape changes within the shared boundaries of the heart can indicate potential pathologic changes such as right ventricular overload. Early detection and robust quantification could provide insight into ideal treatment techniques and intervention timing. However, existing SSM methods do not explicitly handle shared boundaries which aid in a better understanding of the anatomy of interest. If shared boundaries are not explicitly modeled, it restricts the capability of the shape model to identify the pathological shape changes occurring at the shared boundary. Hence, this paper presents a general and flexible data-driven approach for building statistical shape models of multi-organ anatomies with shared boundaries that explicitly model contact surfaces. This work focuses on particle-based shape modeling (PSM), a state-of-art SSM approach for building shape models by optimizing the position of correspondence particles. The proposed PSM strategy for handling shared boundaries entails (a) detecting and extracting the shared boundary surface and contour (outline of the surface mesh/isoline) of the meshes of the two organs, (b) followed by a formulation for a correspondence-based optimization algorithm to build a multi-organ anatomy statistical shape model that captures morphological and alignment changes of individual organs and their shared boundary surfaces throughout the population. We demonstrate the shared boundary pipeline using a toy dataset of parameterized shapes and a clinical dataset of the biventricular heart models. The shared boundary model for the cardiac biventricular data achieves consistent parameterization of the shared surface (interventricular septum) and identifies the curvature of the interventricular septum as pathological shape differences.
统计形状建模(SSM)是一种有价值且强大的工具,可生成复杂解剖结构的详细表示,从而能够对形状及其变化进行定量分析。SSM应用数学、统计学和计算方法将形状解析为某种定量表示(如对应点或地标),这些表示可用于研究形状的协方差模式,并回答有关人群中解剖变异的各种问题。复杂的解剖结构有许多不同的部分,它们之间的相互作用各异或结构错综复杂。例如,心脏是一个四腔器官,各腔之间有多个共享边界。心脏共享边界内的细微形状变化可能表明潜在的病理变化,如右心室负荷过重。早期检测和可靠的量化可为理想的治疗技术和干预时机提供见解。然而,现有的SSM方法并未明确处理有助于更好理解感兴趣解剖结构的共享边界。如果不明确对共享边界进行建模,就会限制形状模型识别共享边界处发生的病理形状变化的能力。因此,本文提出了一种通用且灵活的数据驱动方法,用于构建具有明确建模接触表面的共享边界多器官解剖结构的统计形状模型。 这项工作聚焦于基于粒子的形状建模(PSM),这是一种通过优化对应粒子位置来构建形状模型的先进SSM方法。所提出的用于处理共享边界的PSM策略包括(a)检测和提取两个器官网格的共享边界表面和轮廓(表面网格/等值线的轮廓),(b)随后制定基于对应的优化算法,以构建一个多器官解剖结构统计形状模型,该模型可捕获个体器官及其在整个人口中的共享边界表面的形态和对齐变化。我们使用参数化形状的玩具数据集和双心室心脏模型的临床数据集展示了共享边界管道。双心室心脏数据的共享边界模型实现了共享表面(室间隔)的一致参数化,并将室间隔的曲率识别为病理形状差异。