Suppr超能文献

试验2修订版:结合机器学习与众包创建一个用于更新系统评价的共享空间。

Trial2rev: Combining machine learning and crowd-sourcing to create a shared space for updating systematic reviews.

作者信息

Martin Paige, Surian Didi, Bashir Rabia, Bourgeois Florence T, Dunn Adam G

机构信息

Centre for Health Informatics, Australian Institute of Health Innovation, Macquarie University, Sydney, Australia.

Computational Health Informatics Program, Children's Hospital Boston, Boston, Massachusetts, USA.

出版信息

JAMIA Open. 2019 Jan 11;2(1):15-22. doi: 10.1093/jamiaopen/ooy062. eCollection 2019 Apr.

Abstract

OBJECTIVES

Systematic reviews of clinical trials could be updated faster by automatically monitoring relevant trials as they are registered, completed, and reported. Our aim was to provide a public interface to a database of curated links between systematic reviews and trial registrations.

MATERIALS AND METHODS

We developed the server-side system components in Python, connected them to a PostgreSQL database, and implemented the web-based user interface using Javascript, HTML, and CSS. All code is available on GitHub under an open source MIT license and registered users can access and download all available data.

RESULTS

The system is a web-based interface to a database that collates and augments information from multiple sources including bibliographic databases, the ClinicalTrials.gov registry, and the actions of registered users. Users interact with the system by browsing, searching, or adding systematic reviews, verifying links to trials included in the review, and adding or voting on trials that they would expect to include in an update of the systematic review. The system can trigger the actions of software agents that add or vote on included and relevant trials, in response to user interactions or by scheduling updates from external resources.

DISCUSSION AND CONCLUSION

We designed a publicly-accessible resource to help systematic reviewers make decisions about systematic review updates. Where previous approaches have sought to reactively filter published reports of trials for inclusion in systematic reviews, our approach is to proactively monitor for relevant trials as they are registered and completed.

摘要

目标

通过自动监测相关试验的注册、完成和报告情况,可更快地更新临床试验的系统评价。我们的目标是为系统评价与试验注册之间经过整理的链接数据库提供一个公共接口。

材料与方法

我们用Python开发了服务器端系统组件,将它们连接到一个PostgreSQL数据库,并使用Javascript、HTML和CSS实现了基于网络的用户界面。所有代码在GitHub上均可根据开源的麻省理工学院许可获得,注册用户可以访问和下载所有可用数据。

结果

该系统是一个基于网络的数据库接口,它整理并扩充来自多个来源的信息,包括文献数据库、ClinicalTrials.gov注册库以及注册用户的操作。用户通过浏览、搜索或添加系统评价、验证与评价中包含的试验的链接,以及对他们预期会纳入系统评价更新版的试验进行添加或投票来与系统交互。该系统可以触发软件代理的操作,这些代理会根据用户交互或通过安排来自外部资源的更新,对纳入的和相关的试验进行添加或投票。

讨论与结论

我们设计了一个公众可访问的资源,以帮助系统评价者做出关于系统评价更新的决策。以往的方法试图被动地筛选已发表的试验报告以纳入系统评价,而我们的方法是在相关试验注册和完成时主动进行监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e93c/6951914/a4e230d52e8a/ooy062f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验