Suppr超能文献

通过表面微环境工程提高光催化反应效率

Increasing the Efficiency of Photocatalytic Reactions via Surface Microenvironment Engineering.

作者信息

Zhou Hang, Sheng Xia, Xiao Jie, Ding Zhenyao, Wang Dandan, Zhang Xiqi, Liu Jian, Wu Renfei, Feng Xinjian, Jiang Lei

机构信息

College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China.

Key Laboratory of Bio-inspired Materials and Interfacial Science , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China.

出版信息

J Am Chem Soc. 2020 Feb 12;142(6):2738-2743. doi: 10.1021/jacs.9b12247. Epub 2020 Jan 30.

Abstract

The use of photocatalysis for water purification and environmental protection is of key interest. However, the reaction kinetics can be limited by the restricted accessibility of electron acceptor oxygen and the low adsorption of organic compounds-crucial factors underlying photocatalytic performance. Here we simultaneously alleviate these constraints via reaction interface microenvironment design using superhydrophobic (SHB) TiO nanoarrays as a model photocatalyst. The low surface energy and rough surface microstructure features of the SHB nanoarrays give the photocatalytic system long-range hydrophobic force and an air-water-solid triphase reaction interface. This simultaneously changes the adsorption model of organic compounds and the access pathway of oxygen, leading to a markedly enhanced adsorption capacity and higher interfacial oxygen levels. These synergistic qualities result in over 30-fold higher reaction kinetics versus a normal diphase system. In addition, this photocatalytic system is stable via repeated cycling. Our findings highlight the importance of reaction interface microenvironment design and reveal an effective path for the development of efficient photocatalysis systems.

摘要

光催化用于水净化和环境保护备受关注。然而,反应动力学可能受到电子受体氧可及性受限以及有机化合物吸附性低的限制,而这两个因素是光催化性能的关键所在。在此,我们以超疏水(SHB)TiO纳米阵列作为模型光催化剂,通过反应界面微环境设计同时缓解这些限制。SHB纳米阵列的低表面能和粗糙表面微观结构特征赋予光催化系统远程疏水力和气-水-固三相反应界面。这同时改变了有机化合物的吸附模式和氧的进入途径,从而显著提高吸附能力和界面氧水平。这些协同特性使反应动力学比普通双相系统高出30多倍。此外,该光催化系统通过反复循环仍保持稳定。我们的研究结果突出了反应界面微环境设计的重要性,并揭示了开发高效光催化系统的有效途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验