Suppr超能文献

通过将最大植物大小定义为信息流的极限来模拟植物生长的逻辑模型。

Logistic Models for Simulating the Growth of Plants by Defining the Maximum Plant Size as the Limit of Information Flow.

机构信息

International Photosynthesis Industrialization Research Center, Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu, Japan.

Vivent sàrl, Crans-près-Céligny, Switzerland.

出版信息

Plant Signal Behav. 2020;15(2):1709718. doi: 10.1080/15592324.2019.1709718. Epub 2020 Jan 27.

Abstract

Today, the Logistic equations are widely applied to simulate the population growth across a range of fields, chiefly, demography and ecology. Based on an assumption that growth-regulating factors within the Logistic model, namely, the rate of increase () and carrying capacity (), can be considered as the functions reflecting the combination of the organism- and environment-specific parameters, here, we discussed the possible application of modified synthetic Logistic equations to the simulation of the changes in (1) population (density per volume) of photosynthetically growing free-living algae and (2) size (mass per individual) of higher plants, by newly composing value as a function reflecting the photosynthetic activities. Since higher plants are multi-cellular organisms, a novel concept for the carrying capacity must also be introduced. We brought the assumption that information sharing amongst cells strongly influences the physiology of multi-cellular structures eventually defining the maximum size of plants, into view. A simplest form of 'synthetic organism' conformed to test this assumption is a linear chain of cells, and the first physiological phenomenon, modeled in this way, is growth. This combination of information flow along a chain, with exponential growth, produces a simple allotropic relationship. This relationship is compared with results for plants and is found to have excellent predictive power. This theory shows that fast-growing organisms, or multicellular structures, remain small, because of their inability to share information sufficiently quickly and, also, predicts determinate growth. The success of this simple model suggests, firstly, that the inclusion of information flows in theoretical physiology models, which have been, to date, dominated by energetic or metabolic assumptions, will be improved by incorporating information flows. Secondly, the application of more complex information theories, such as those of Shannon, to biological systems will offer deep insights into the mechanisms and control of intercellular communication.

摘要

如今,Logistic 方程被广泛应用于模拟各个领域的人口增长,主要包括人口学和生态学。基于 Logistic 模型中的增长调节因素(即增长率 () 和承载能力 ())可以被视为反映生物体和环境特定参数组合的函数的假设,我们在这里讨论了修改后的综合 Logistic 方程在模拟以下两个方面的可能应用:(1)光合作用自由生活藻类的种群(单位体积密度)的变化,以及(2)高等植物的大小(单位个体质量)的变化。我们通过重新组成一个反映光合作用活性的函数来组成新的 值。由于高等植物是多细胞生物,因此还必须引入新的承载能力 概念。我们引入了一个假设,即细胞之间的信息共享强烈影响多细胞结构的生理学,最终决定植物的最大大小。我们将这个假设应用于一个最简单形式的“合成生物体”,即细胞的线性链,并且以这种方式模拟的第一个生理现象是生长。这种沿着链的信息流与指数增长的结合产生了一种简单的同素异形体关系。将这种关系与植物的结果进行比较,发现它具有出色的预测能力。该理论表明,由于快速生长的生物体或多细胞结构无法快速共享信息,因此它们的信息共享能力较差,并且也预测了确定性生长。这个简单模型的成功首先表明,在理论生理学模型中纳入信息流,这些模型迄今为止一直由能量或代谢假设所主导,通过纳入信息流将得到改善。其次,将更复杂的信息理论(例如 Shannon 的信息理论)应用于生物系统将提供对细胞间通信的机制和控制的深入了解。

相似文献

5
Density-dependence as a size-independent regulatory mechanism.密度依赖作为一种与大小无关的调节机制。
J Theor Biol. 2006 Jan 21;238(2):245-56. doi: 10.1016/j.jtbi.2005.05.014. Epub 2005 Jun 28.

本文引用的文献

1
On the evolution of bacterial multicellularity.论细菌多细胞性的进化。
Curr Opin Microbiol. 2015 Apr;24:21-8. doi: 10.1016/j.mib.2014.12.007. Epub 2015 Jan 16.
5
The reaction between acetyl choline and muscle cells.乙酰胆碱与肌肉细胞之间的反应。
J Physiol. 1926 Aug 6;61(4):530-46. doi: 10.1113/jphysiol.1926.sp002314.
9
Information as a basic property of the universe.信息作为宇宙的一种基本属性。
Biosystems. 1996;38(2-3):135-40. doi: 10.1016/0303-2647(96)88368-7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验