Ghasemian Mohammad B, Daeneke Torben, Shahrbabaki Zahra, Yang Jiong, Kalantar-Zadeh Kourosh
School of Chemical Engineering, University of New South Wales (UNSW), Sydney Campus, NSW 2052, Australia.
Nanoscale. 2020 Feb 6;12(5):2875-2901. doi: 10.1039/c9nr08063e.
The emergence of piezoelectricity in two-dimensional (2D) materials has represented a milestone towards employing low-dimensional structures for future technologies. 2D piezoelectric materials possess unique and unprecedented characteristics that cannot be found in other morphologies; therefore, the applications of piezoelectricity can be substantially extended. By reducing the thickness into the 2D realm, piezoelectricity might be induced in otherwise non-piezoelectric materials. The origin of the enhanced piezoelectricity in such thin planes is attributed to the loss of centrosymmetry, altered carrier concentration, and change in local polarization and can be efficiently tailored via surface modifications. Access to such materials is important from a fundamental research point of view, to observe the extraordinary interactions between free charge carriers, phonons and photons, and also with respect to device development, for which planar structures provide the required compatibility with the large-scale fabrication technologies of integrated circuits. The existence of piezoelectricity in 2D materials presents great opportunities for applications in various fields of electronics, optoelectronics, energy harvesting, sensors, actuators and biotechnology. Additionally, 2D flexible nanostructures with superior piezoelectric properties are distinctive candidates for integration into nano-scale electromechanical systems. Here we fundamentally review the state of the art of 2D piezoelectric materials from both experimental and theoretical aspects and report the recent achievements in the synthesis, characterization and applications of these materials.
二维(2D)材料中压电性的出现代表了采用低维结构用于未来技术的一个里程碑。二维压电材料具有其他形态中所没有的独特且前所未有的特性;因此,压电性的应用可以得到大幅扩展。通过将厚度减小到二维领域,原本非压电的材料可能会被诱导出压电性。这种薄平面中增强压电性的起源归因于中心对称性的丧失、载流子浓度的改变以及局部极化的变化,并且可以通过表面修饰有效地进行调控。从基础研究的角度来看,获得此类材料对于观察自由电荷载流子、声子和光子之间的非凡相互作用很重要,从器件开发的角度来看也很重要,因为平面结构为与集成电路的大规模制造技术提供了所需的兼容性。二维材料中压电性的存在为电子、光电子、能量收集、传感器、致动器和生物技术等各个领域的应用提供了巨大机遇。此外,具有卓越压电性能的二维柔性纳米结构是集成到纳米级机电系统中的独特候选材料。在此,我们从实验和理论两个方面对二维压电材料的研究现状进行了基础性综述,并报告了这些材料在合成、表征和应用方面的最新进展。